#7] Similar to #32 (p. 569 in the Book).
See Examples #8 & #9 p. 566 (esp. #9).
My WA #7 is \(2 \sin \left(\frac{x}{3}\right) - 1 = 0\)

Hint:

1. Isolate the TRIG FUN.
 \[
 \sin \left(\frac{x}{3}\right) = \frac{1}{2}
 \]

2. Isolate the "argument" of the function.
 One value for \(\frac{x}{3}\) is \(\frac{\pi}{6}\) b/c
 if \(\frac{x}{3} = \frac{\pi}{6}\), then \(\sin \left(\frac{x}{3}\right) = \sin \left(\frac{\pi}{6}\right) = \frac{1}{2}\)

3. Next—what is the period of \(\sin (b \cdot x)\)?
 Ans. \(P = \frac{2\pi}{b}\).
 What is the period of \(\sin \left(\frac{x}{3}\right) = \sin \left(\frac{1}{3} x\right)\)
 Ans. \(P = \frac{2\pi}{\frac{1}{3}} = 2\pi \cdot 3 = 6\pi\).

\[
\begin{align*}
\therefore \frac{x}{3} = \frac{\pi}{6} & \Rightarrow x = \frac{3\pi}{6} = \frac{\pi}{2} \\
\text{So } x &= \frac{\pi}{2} + 6\pi k
\end{align*}
\]

This is the "a" that WA is talking about.

4. Now the question to you is—are there any other answers \(\boxed{\frac{\pi}{2} + 6\pi k}\)? ??? (Yes!).