#1/10 (A) Eval. Exact

(a) \(\log_4 (\sqrt{2}) = \log_4 (2^{1/2}) = x \) so \(4^x = 2^{1/2} \)

So \(2^{2x} = 2^{1/2} \) so \(2x = \frac{1}{2} \) so \(x = \frac{1}{4} \)

\[\log_4 (\sqrt{2}) = \frac{1}{4} \]

(b) \(\log_4 (8) = x \) so \(4^x = 8 \) so \(2^{2x} = 2^3 \)

So \(2x = 3 \), so \(x = \frac{3}{2} \)

\[\log_4 (8) = \frac{3}{2} \]

(B) Use defn:

(a) \(\log_3 (25) = 2 \) so \(x^2 = 25 \)

\[x = 5 \]

(b) \(\log_3 (8) = \frac{2}{3} \) so \(x^{2/3} = 8 \)

\[(x^{2/3})^{3/2} = (8)^{3/2} = 8 \cdot 8^{1/2} = 8 \cdot 2\sqrt{2} = 16\sqrt{2} \]

#2/10 Solve (set): \(e^{2x} + 2e^x - 8 = 0 \) Let \(A = e^x \)

\[\therefore A^2 + 2A - 8 = 0 \therefore (A+4)(A-2) = 0 \]

\[\therefore A = -4 \text{ or } A = 2 \] (Exclude -4) \[; e^x = 2 \]

\[; x = \ln(2) \] \[\{ \ln(2) \} \]
\#3/10 Solve for \(x \). Exact.
\[
\ln(x) + \ln(x-1) = \ln(6)
\]
\[\text{Solve: } \ln(x(x-1)) = \ln(6) \Rightarrow x(x-1) = 6
\]
\[\Rightarrow x^2 - x - 6 = 0 \Rightarrow (x-3)(x+2) = 0
\]
\[\Rightarrow x = 3 \text{ or } x = -2 \quad \text{Exclude } x = -2
\]
\[\Rightarrow \text{Sol set is } \{3\}
\]
\#4/10 \(M = \log \left(\frac{I}{s} \right) \); \(M_{SF} = \log \left(\frac{I_{SF}}{s} \right) = 8.3 \)
and \(M_I = \log \left(\frac{I_I}{s} \right) \) and \(I_T = 5I_{SF} \)

So \(M_T = \log \left(\frac{I_T}{s} \right) = \log \left(\frac{5I_{SF}}{s} \right) \)

\[= \log \left(5 \cdot \frac{I_{SF}}{s} \right) = \log (5) + \log \left(\frac{I_{SF}}{s} \right)
\]

\[= \log (5) + 8.3 \approx 8.998970004 \approx 9.0
\]

The magnitude of the Tallahassee earthquake was about 9.0 on the Richter scale.
#5/10\[\begin{aligned} x + 3z &= 3 \\ 2x + y - 2z &= 5 \\ -y + 8z &= 8 \end{aligned} \rightarrow \begin{aligned} x + 3z &= 0 \\ y - 8z &= 0 \\ 0 &= 1 \end{aligned} \]

Since the reduced form includes the equation 0=1, which is impossible, the system is inconsistent.

#6/10\[\begin{aligned} x + z &= 2 \\ 2x + y + z &= 5 \\ 3y - 3z &= 3 \end{aligned} \rightarrow \begin{aligned} x + z &= 2 \\ y - z &= 1 \\ 0 &= 0 \end{aligned} \]

\[\therefore \begin{aligned} x &= 2 - z \\ y &= 1 + z \\ z &= z \end{aligned} \]

\[\begin{aligned} x &= 2 - t \\ y &= 1 + t \\ z &= t \end{aligned} \]

The system is dependent.

\[\therefore \text{Sol set } \{(x,y,z) | x=2-t, y=1+t, z=t, t \in \mathbb{R}\} \]

#7/10 Solve, No calc.

\[\begin{aligned} x + y &= 20 \\ xy &= 91 \end{aligned} \rightarrow \begin{aligned} y &= 20 - x \\ (20-x)^2 &= 91 \end{aligned} \]

\[\therefore \begin{aligned} -x^2 + 20x - 91 &= 0 \\ x^2 - 20x + 91 &= 0 \end{aligned} \]

(Complete the square) \[\begin{aligned} x^2 - 20x &= -91 \\ x^2 - 20x + 100 &= -91 + 100 = 9 \end{aligned} \]

\[\therefore (x-10)^2 = 9 \]

\[\therefore x - 10 = \pm 3 \]

\[\therefore x = 10 \pm 3 \]

\[\therefore x = 13 \text{ and } y = 7 \text{ or } x = 7 \text{ and } y = 13 \]

\[\therefore \text{Sol set. } \{(13,7), (7,13)\} \]
Let \(x \) = \# of gallons of reg. gas.

\[y = "" "" "" hi-test."" \]

1. \(x + y = 5 \)
2. \(2.00x + 3.00y = 13.50 \)

\[y = 5 - x \]

\[2x + 3(5-x) = 13.5 \]

\[2x + 15 - 3x = 13.5 \]

\[15 - 13.5 = x \quad \text{so} \quad x = 1.5 \]

\[y = 5 - x = 5 - 1.5 = 3.5 \]

\[y = 3.5 \]

I pumped 1.5 gal. of regular gas and 3.5 gal. of hi-test gas.

Check:
\[2(1.5) + 3(3.5) = 3 + 10.5 = 13.5 \checkmark \]

\[\begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & 5 \\ 9 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 17 \\ 19 \\ 11 \end{bmatrix} \]

\[\begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & 5 \\ 9 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 17 \\ 19 \\ 11 \end{bmatrix} \]

\#10/10| Solve, Exact \(\frac{30}{2 + 3e^{-x}} = 10 \)

\[30 = 10(2 + 3e^{-x}) \quad \text{so} \quad 3 = 2 + 3e^{-x} \]

\[1 = 3e^{-x} \quad \frac{1}{3} = e^{-x} \quad \frac{1}{x} = \frac{1}{e^x} \quad e^x = 3 \]

\[x = \ln(3) \quad \{ \ln(3) \} \]

BONUS

\[n(t) = n_0e^{rt} \quad \text{at} \quad n(t) = 85e^{0.18t} \]

\[n(3) = 85e^{0.54} \approx 145 \quad 860 \quad 5833 \approx 146 \text{ frogs.} \]

\[600 = 85e^{0.18t} \quad \frac{600}{85} = e^{0.18t} \]

\[t = \frac{100}{0.18} \cdot \ln \left(\frac{120}{17} \right) = \frac{50}{0.18} \cdot \ln \left(\frac{120}{17} \right) \approx 10.85710222 \text{ yrs.} \]