25. \(\sqrt{2} \)

1. Sky Diver jumps. \(v(t) = 90 \left(1 - e^{-0.25t} \right) \)

 (a) Initial velocity.
 (b) vel. after 8 sec. (round to 2 dec. then to 0)

 Solution

 (a) \(v(t) = 90 \left(1 - e^{-0.25 \cdot 0} \right) = 90 (1 - 1) = 0 \)

 (b) \(v(t) = 90 \left(1 - e^{-0.25 \cdot 8} \right) \)

 \[77.819 \text{ ft/sec} \approx 77.8 \text{ ft/sec} \]

2. Answers:

- The initial velocity is 0 ft/sec, and the velocity after 8 sec is approximately 77.8 ft/sec.

26.

4. Solve: \(\log_a (x-2) + \log_a (x+4) = 3 \)

Solution

\[\log_a [(x-2)(x+4)] = 3 \]

- \(x^2 + x - 12 = 8 \)
- \(x^2 + x - 20 = 0 \)

3. Now solve by factoring: \((x+5)(x-4) = 0 \)

- If \(x = -5 \) or \(x = 4 \)

4. But -5 doesn't "work" in \((*) \):

\[\log_a (-5-3) \text{ does not exist} \]

Thus, \(x = 4 \) does work.

5. Earthquake:

- Indonesia: \(M_s = 9.0 \)
- Macquarie: \(M_m = ? \)

Find \(M_m \):

\[M_m \approx 6.2 \]

3. The magnitude of the Macquarie earthquake of 4/16/07 is approximately 6.2 on the Richter scale.

6. Find the (a) focus, (b) directrix, (c) focal diameter. \(x = \frac{1}{2} \)

Solution

\[y^2 = 2x \text{ std. Form.} \]

- \(p = 2 \)

3. The parabola is horizontal & it opens to the right.

3. \(F(\frac{1}{2}, 0) \)

The directrix is \(x = -\frac{1}{2} \) and the sol. = \{4p - 2\}.
#7

Vertex @ (0,0), Focus on y-axis, 2a = 8

Sol. 1
\[f_1d = 8 \quad f_1 = \frac{4p}{1} \quad b = \frac{1}{4p} \]

and parabola opens upward; \(|4p| = 4p \), So \(4p = 8 \)

So \(p = 2 \)

2. Parabola is vertical, so \(F(0,2) \), directrix \(y = -2 \)

and eq. is \(x^2 = 4py \) (vertical), so \(x^2 = 8y \)

2.

The equation is \(x^2 = 8y \); the focus is \(F(0,2) \) and the equation of the directrix is \(y = -2 \).

BONUS

Graph and label vertices, focus, y-intercepts.

\[4x^2 + 9y^2 = 36 \]

Sol. 1
\[\frac{x^2}{9} + \frac{y^2}{4} = 1 \] is std. form.

\(a^2 = 9 \) and \(b^2 = 4 \) thus \(c^2 = a^2 - b^2 = 9 - 4 = 5 \)

so \(c = \sqrt{5} \). \(\text{And } a = 3, b = 2 \)

Note: \(\text{L.R.} = \frac{2b^2}{a^2} = \frac{5}{3} \)

[Diagram of an ellipse]

Also, if \(x = 1 \) \(y^2 = 4, \frac{8}{3} = \frac{32}{9}, \) so \(y = \pm \frac{4}{3} \).