§4.1: p. 232: #68. Show that 5 is a critical number of the function
\[g(x) = 2 + (x-5)^3 \]
but \(g \) does not have a local extreme value at \(x = 5 \).

Solution:

1. Compute \(g'(x) = 3(x-5)^2 \)
2. Set \(g'(x) = 0 \) and solve: \(3(x-5)^2 = 0 \) \(\Rightarrow x = 5 \)

 so \(x = 5 \) is a TYPE I CN.

Consider \(x_1 = 4.9 \) and \(x_2 = 5.1 \)

\[g'(x_1) = g'(4.9) = 3(4.9-5)^2 > 0 \quad \text{and} \quad g'(x_2) = g'(5.1) = 3(5.1-5)^2 > 0 \]

\(\therefore \) The slope of the tangent line to the graph at points near the CN 5 is positive on both sides of the CN 5. Therefore \(g \) does not have a local extreme value at \(x = 5 \) (as per def. 2, p. 224).

Alternative Method:

\[g(x_1) = g(4.9) = 2 + (4.9-5)^3 = 2 + (-0.1)^3 \]
\(\leq 2 \)

and \(g(x_2) = g(5.1) = 2 + (5.1-5)^3 > 2 \)

But \(g(5) = 2 \) \(\therefore \) \(g \) has no local extreme value at \(x = 5 \)!

2. §4.3: p. 249: #50

Prove that for all \(x > 1 \),
\[2\sqrt{x} > 3 - \frac{1}{x} \]

Try This:

Define \(g(x) = 2\sqrt{x} - 3 + \frac{1}{x} \) for \(x > 1 \)

\[g(1) = 0 \]
\[g'(x) = 2 \cdot \frac{1}{2\sqrt{x}} - 0 - \frac{1}{x^2} \]

\[= \frac{1}{\sqrt{x}} - \frac{1}{x^2} > 0 \]

\(x > 1 \)

1. \(x^2 > \sqrt{x} \)
2. \(\frac{1}{x^2} < \frac{1}{\sqrt{x}} \)
3. \(\therefore \) \(\frac{1}{\sqrt{x}} - \frac{1}{x^2} > 0 \)

\(\therefore \) The function \(g \) is always increasing but \(g(1) = 0 \) \(\therefore g(x) > 0 \) for all \(x > 1 \)

\[2\sqrt{x} - 3 + \frac{1}{x} > 0 \]
\[2\sqrt{x} > 3 - \frac{1}{x} \]
for all \(x > 1 \)
3. §4.3: p. 288: #3 Find two positive numbers whose product is 100 and whose sum is a minimum.

SoM:

1. Let the numbers be \(x \) and \(y \).

2. \(xy = 100 \) \(\therefore xy = 100 \)

3. Let \(f(x) \) be the sum of \(x \) and \(y \).

\[
\therefore f(x) = x + y \text{ but } y = \frac{100}{x}
\]

\[
\therefore f(x) = x + 100x^{-1}
\]

4. "MINIMIZE" the sum-function \(f(x) \).

 a. \(f'(x) = 1 - 100x^{-2} \)

 b. Set \(f'(x) = 0 \) \& Solve: \(1 - \frac{100}{x^2} = 0 \)

\[x = \pm 10 \]

(Throw out \(-10 \) b/c \(x \) must be pos.)

\[\therefore x = 10 \]

5. Test for "min": (Use 2nd Test) \(f''(x) = 200x^{-3} \) and \(f''(10) > 0 \) : \(x = 10 \) is a min. val.

\[\therefore \] The two numbers are 10 and 10.

4. §5.2: p. 337: #9. Use MRule (n given)

to approx the integral. (4 dec. places)

\[
\int_{x=2}^{x=10} \sqrt{x^3 + 1} \, dx \quad n = 4.
\]

SoM:

(p. 332).

\[
\int_{x=a}^{x=b} f(x) \, dx \approx [f(x_1) + f(x_2) + \ldots + f(x_n)] \Delta x \quad (\ast)
\]

\[\Delta x = \frac{b-a}{n} \] and \(x_i = \frac{i}{n} (x_1 + x_n) \)

\[\Delta x = \frac{10-2}{4} = [2] \]

\[\begin{array}{cccccc}
2 & 3 & 4 & 6 & 8 & 10 \\
\hline
x_i & 3 & 5 & 7 & 9 & \sqrt{750} \\
\hline
f(x_i) & \sqrt{28} & \sqrt{126} & \sqrt{344} & \sqrt{750} & \sqrt{750} \\
\hline
\end{array} \]

\[\int_{x=2}^{x=10} \sqrt{x^3 + 1} \, dx \approx [\sqrt{28} + \sqrt{126} + \sqrt{344} + \sqrt{750}] \frac{2}{4} \approx 124.164 \text{ (4 dec. places)} \]

\[\approx 124.1644 \text{ (4 dec. places)} \]
5. \(f(x) = \sqrt{x^2 + 1} - x \)

Use guidelines to sketch curve. (p.264)

Solve

1. **Domain:** (By inspection) \(\text{Dom}(y) : (-\infty, \infty) \)
2. **Intercepts:**
 - **X-int.** (when \(y = 0 \))
 \[0 = \sqrt{x^2 + 1} - x \quad \Rightarrow \quad \sqrt{x^2 + 1} = x \]
 \[\text{Squ. b.s.} \quad x^2 + 1 = x^2 \quad \star \quad (\text{contradiction}) \]
 \[\text{There are no X-intercepts.} \]
 - **Y-int.** (when \(x = 0 \))
 \[y = \sqrt{0^2 + 1} - 0 = 1 \quad \text{Y-int is P}(0,1) \]
3. **Symmetry:** \(f(x) = \sqrt{x^2 + 1} - x \)
 - Consider \(f(-x) = \sqrt{(-x)^2 + 1} - (-x) = \sqrt{x^2 + 1} + x \)
 - So \(f(-x) \neq -f(x) \) (not odd)
 - \(f(-x) \neq f(x) \) (not even)
 - **No symmetry.**
4. **Asymptotes:** (Hor. Vert. Slant.)

E. Intervals of \(\neq \)

\[f(x) = (x^2 + 1)^{1/2} - x \]
\[f'(x) = \frac{1}{2}(x^2 + 1)^{-1/2} \cdot 2x - 1 = x(x^2 + 1)^{-1/2} - 1 \]

Set \(f'(x) = 0 \) \# **Solve**

\[\frac{x}{(x^2 + 1)^{1/2}} = 1 \quad \Rightarrow \quad x = (x^2 + 1)^{1/2} \]

\# sq. b.s. \(x^2 = x^2 + 1 \) \#. Thus, there is no change in the increase/decrease of this function.

\(f(2) = \sqrt{5} - 2 \)
\(f'(a) = 1 \)
\(f'(a) > f'(x) \)
\[\therefore f \text{ is decreasing on } (-\infty, \infty) \]
[E] \text{ Loc. Max/Min. } f \text{ has no LOCAL MAX, VAL, and NO LOCAL MIN, VAL } B < f'(x) < 0 \text{ for all } x \in \mathbb{R} \text{ (and there are no type II CN's.)}

[\text{Concavity}] \quad f(x) = \sqrt{x^2 + 1} - x

\begin{align*}
f'(x) &= x (x^2 + 1)^{-1/2} - 1 \\
\therefore f''(x) &= x \frac{d}{dx} [(x^2 + 1)^{-1/2}] + 1 \cdot (x^2 + 1)^{-1/2} \\
&= \frac{-x^2}{(x^2 + 1)^{3/2}} + \frac{1}{(x^2 + 1)^{1/2} (x^2 + 1)} \\
&= \frac{-x^2 + x^2 + 1}{(x^2 + 1)^{3/2}} = \frac{1}{(x^2 + 1)^{3/2}} \\
\therefore f''(x) &= \frac{1}{(x^2 + 1)^{1/2}}
\end{align*}

\text{ and for any } x \in \mathbb{R} \quad f''(x) > 0

\therefore f \text{ is concave up on } (-\infty, \infty) \text{ and so there are no points of inflection.}

[E, §4.2, p. 239: #34] A number a is called a "fixed point" of a function f if f(x) = a.

\begin{proof}
If f(x) \neq 1 \text{ for all } x \in \mathbb{R}, \text{ the } f \text{ has at most 1 fixed point. (not more than 1)}
\end{proof}

\begin{proof}
\text{Assume not, i.e., assume there are more than 1 fixed points. (and hope for a contradiction.)}

\text{Assume there are 2 fixed points, a and b, and assume without loss of generality, that } a < b.

\text{Tacit hypothesis that } f \text{ is differentiable on } (-\infty, \infty),
\text{ and it follows that } f \text{ is continuous on } (-\infty, \infty)
\text{ b/c "differentiability implies continuity."

\therefore f \text{ is continuous on } [a, b]
\text{ and } f \text{ is differentiable on } (a, b)
\text{. \therefore } f \text{ satisfies the hypotheses of the MVT.
Thus, there must exist at least one number } c \in (a, b)
\text{ such that}
\begin{equation}
f'(c) = \frac{f(b) - f(a)}{b - a}
\end{equation}

"BUT" a + b \text{ are fixed pts. } \therefore f(a) = a \neq f(b) = b
\[f'(x) = \frac{b-a}{b-a} = 1 \], but this contradicts the hypothesis \(f'(x) \neq 1 \) \(\forall x \in \mathbb{R} \).

1. There can't be 2 fixed points for this function.
2. There is at most one fixed point for \(f \).

4. Sec. 5.1: p. 270: #19
 Use Guidelines. \(y = x \sqrt{5-x} \)

 Solv.: \[\text{Dom}(y) = (-\infty, 5] \]

 B. Intercepts:
 1. X-int \((y = 0) \): \(0 = x \sqrt{5-x} \)
 \(x = 0 \) and \(x = 5 \)
 \(P(0,0), P_2(5,0) \)
 2. Y-int \((x = 0) \): \(P_1(0,0) \)

 C. Symmetry: \(f(x) = x \sqrt{5-x} \)
 \(f(-x) = (-x) \sqrt{5-(-x)} = -x \sqrt{5+x} \)

 \[= -x \sqrt{5-x} \quad \text{(odd)} \]
 \[= x \sqrt{5-x} \quad \text{(even)} \]

 \(f \) is neither odd nor even.

2. **ASYMPTOTES.** H/V/S.
 1. H.A. \[\lim_{x \to \infty} x \sqrt{5-x} \quad \text{DNE.} \]
 \[\lim_{x \to \infty} x \sqrt{5-x} = -\infty \]

 \[\text{There are no H.A.} \]

 2. V.A. **None**

 3. S.A. **None**

E. Intervals \(\uparrow \downarrow \) : \(f(x) = x \sqrt{5-x} \)

 \[f'(x) = x \cdot \frac{1}{2\sqrt{5-x}} \cdot (-1) + \sqrt{5-x} \]
 \[= -\frac{x}{2\sqrt{5-x}} + \frac{\sqrt{5-x}}{1} \cdot \frac{2\sqrt{5-x}}{2\sqrt{5-x}} \]
 \[= -\frac{x + 2(5-x)}{2\sqrt{5-x}} = \frac{10 - 3x}{2\sqrt{5-x}} \]

 \(\text{Dom} f' : (-\infty, 5) \)

 Set \(f'(x) = 0 \) \& Solve.

 \[10 - 3x = 0 \]
 \[\Rightarrow x = \frac{10}{3} \quad (\frac{10}{3} \in \text{Dom } f) \]

 Try 2nd Der. Test:

 \[f''(x) = \frac{1}{4(5-x)} \cdot \left[2\sqrt{5-x} \cdot (-3) - (10-3x) \cdot 2 \cdot \frac{1}{2\sqrt{5-x}} \right] \]
\[= \frac{1}{4(5-x)} \left[(-6)\sqrt{5-x} + \frac{(10-3x)}{4\sqrt{5-x}} \right] \]
\[= \frac{1}{4(5-x)^{\frac{3}{2}}} \left[-6\frac{(5-x)}{\sqrt{5-x}} + \frac{10-3x}{\sqrt{5-x}} \right] \]
\[= \frac{1}{4(5-x)^{\frac{3}{2}}} \left[-6(5-x) + 10-3x \right] \]
\[= \frac{1}{4(5-x)^{\frac{3}{2}}} \left[-30 + 6x + 10 - 3x \right] \]
\[= \frac{1}{4(5-x)^{\frac{3}{2}}} \left[3x - 20 \right] \]

Look at \(f'' \left(\frac{10}{3} \right) = \frac{1}{4\left(\frac{5}{3} \right)^{\frac{3}{2}}} \cdot (10 - 20) < 0 \)

\(f \) has a local max value of \(f \left(\frac{10}{3} \right) \) at \(x = \frac{10}{3} \)

\(f \) is increasing on \((-\infty, \frac{10}{3}) \)

\(f \) is decreasing on \((\frac{10}{3}, \infty) \)

\(f \) is CD on \((-\infty, 5] \)

\[\text{Solve for } \theta. \]

\[\text{The indep. var. is } \theta, \text{ the angle.} \]

\[\text{The dep. var. is } F, \text{ the force.} \]

\[\text{Consider } \quad F(\theta) = \frac{\mu W}{\mu \sin(\theta) + \cos(\theta)} \]

\[\sin(\theta) = \frac{1}{\mu} \]

\[\cos(\theta) = \frac{\mu - 1}{\mu} \]

\[\text{Fnd } \theta \text{ dF} \text{ d} \theta, \text{ set it equal to zero, and solve for } \theta. \]

\[\text{F} \left(\theta \right) = \mu W \left(-\frac{\mu \cos(\theta) - \sin(\theta)}{\left(\mu \sin(\theta) + \cos(\theta) \right)^2} \right) \]

\[\text{Set } F(\theta) = 0 \]

\(\text{Numerator must be zero) i.e. } -\mu W \left[\mu \cos(\theta) - \sin(\theta) \right] \]

\[\mu \cos(\theta) - \sin(\theta) = 0 \quad \therefore \mu \cos(\theta) = \sin(\theta) \]

\[\mu = \tan(\theta) \]