#1 [6.1: p. 435: #5] Find the volume of the solid which lies between planes \(\perp \) to the \(x \)-axis @ \(x = -1 \) \& \(x = 1 \). The cross-sections \(\perp \) to the \(x \)-axis are squares whose bases run from the semicircle \(y = -\sqrt{1-x^2} \) to the semicircle \(y = \sqrt{1-x^2} \).

Solution:

1. **Sketch.**
 - **A**: \(x^2 + y^2 = 1 \)
 - **B**: \(y = -\sqrt{1-x^2} \)
 - **C**: \(y = \sqrt{1-x^2} \)
 - **D**: \(x \)
 - **E**: \(y \)
 - **F**: \(z \)

2. **\(\Delta \) slice is \(\Delta x \)**

3. **Area of Cross-section:** \(A(x) = s^2 \)
 - but we must express \(s \) in terms of \(x \).
 - Here's the reasoning: \(C \) is a "generic point" on the \(x \)-axis. Its coordinates are \((x, 0)\). More importantly, the coordinates of \(A \) and \(B \) are \(A(x, -\sqrt{1-x^2}) \) and \(B(x, \sqrt{1-x^2}) \) and the distance between \(A \) and \(B \) is pretty obviously \(2\sqrt{1-x^2} \). But this is \(s \).

 \[A(x) = \left[2\sqrt{1-x^2} \right]^2 = 4(1-x^2) \text{ (by symmetry)} \]

4. **\(V = \int_{x=a}^{x=b} A(x) \, dx = \int_{x=-1}^{x=1} 4 \left(1-x^2 \right) \, dx = 2 \int_{y=0}^{y=1} 4 \left(1-y^2 \right) \, dy \)**
 - \(= 8 \left[x - \frac{x^3}{3} \right]_{x=-1}^{x=1} = 8 \left[1 - \frac{1}{3} \right] = 8 \cdot \frac{2}{3} = \frac{16}{3} \text{ units}^3 \)

 Thank You, Sir Isaac!

5. **The volume is \(\frac{16}{3} \text{ units}^3 \)**
#2 [p. 436: #23] Find vol. of solid of rev. gen. by rotating region \(R \) abt. \(x \)-axis.

\[R: \quad y = \sqrt{\cos(x)}, \quad x \in \left[0, \frac{\pi}{2} \right], \quad y = 0, \quad x = 0. \]

Soln.

1. Sketch.

 ![Sketch of the region](image)

 Note: The \(x \)-axis is at the center of the circle & it is perpendicular to this page.

2. \(\Delta \) slice: \(\Delta x \)

3. \(A(x) = \pi [r(x)]^2 \)
 \[A(x) = \pi \left(\sqrt{\cos(x)} \right)^2 \]
 \[A(x) = \pi \cos(x) \]

4. \[V = \int_{x=a}^{x=b} A(x) \, dx = \int_{x=0}^{x=\frac{\pi}{2}} \pi \cos(x) \, dx \]
 \[= \pi \int_{x=0}^{x=\frac{\pi}{2}} \cos(x) \, dx = \pi \left\{ \sin(x) \right\}_{x=0}^{x=\frac{\pi}{2}} = \pi \left\{ 1 - 0 \right\} = \pi \text{ units}^3 \]

5. The volume is \(\pi \) units\(^3\).