Some Thoughts on Lines and Planes (Relevant to §12.5)

1. We have seen that the vector equation for a line \(L \), through \(P_0(x_0, y_0, z_0) \) parallel to the vector \(\mathbf{v} = \langle a, b, c \rangle \) is
\[
\mathbf{r} = \mathbf{r}_0 + t\mathbf{v}, \quad t \in \mathbb{R}
\]
where \(\mathbf{r}_0 = \overrightarrow{OP}_0 \).

This can also be written as a vector function
\[
\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}, \quad t \in \mathbb{R}.
\]

2. And if we look at components:
\[
\mathbf{r} = \langle x, y, z \rangle, \quad \mathbf{r}_0 = \langle x_0, y_0, z_0 \rangle, \quad \mathbf{v} = \langle a, b, c \rangle
\]
\[
\langle x, y, z \rangle = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle
\]
\[
\therefore \langle x, y, z \rangle = \langle x_0 + ta, y_0 + tb, z_0 + tc \rangle
\]

Now, two vectors are equal iff corresponding components are equal. So it follows that
\[
L: \begin{cases}
x = x_0 + ta \\
y = y_0 + tb \\
z = z_0 + tc
\end{cases} \quad t \in \mathbb{R}
\]
specifies the coordinates of a "generic" point on the line \(L \). These equations are called the parametric equations for \(L \).

3. Since there are lots of vectors (all parallel to \(\mathbf{v} \)) and lots of points \(P_0 \) (\(P_0 \) could be any specific point on \(L \)) which could be used to specify \(L \), it follows that there are lots of different-looking sets of parametric equations which could be used to describe \(L \).
Now, if we take our parametric equations for \(C \), solve each one for \(t \), and set them equal, we get the symmetric equations for \(C \):

\[
\begin{align*}
\dot{x} &= x_0 + ta & \Rightarrow & & t = \frac{x-x_0}{a} \\
\dot{y} &= y_0 + tb & \Rightarrow & & t = \frac{y-y_0}{b} \\
\dot{z} &= z_0 + tc & \Rightarrow & & t = \frac{z-z_0}{c}
\end{align*}
\]

\[
\Rightarrow \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c} \quad \text{provided} \quad a \neq 0 \land b \neq 0 \land c \neq 0
\]

II Distance from a Point \(S \) in space to a line \(C \) in space.

A We learned in class that the distance between a point \(S \) and a line \(C \) (parallel to a vector \(\vec{\n} \)) is given by

\[
d(S, C) = \frac{||\vec{0}S \times \vec{\n}||}{||\vec{\n}||}
\]

where \(P_0 \in \mathcal{L} \).

B Let us now recall why that is so.

First, look at the graphics:

\[
\begin{align*}
\vec{C} & \quad \vec{\n} \\
\vec{P_0} & \quad S
\end{align*}
\]

In vector form \(C \): \(\vec{r} = \vec{r}_0 + t\vec{\n} \) and \(\vec{r}_0 = \overrightarrow{OP_0} \) for \(P_0 \in \mathcal{L} \).

So,...

\[
\begin{align*}
P_0 & \quad \vec{P_0S} \\
S & \quad \vec{d} \quad \frac{\vec{d}}{||\vec{P_0S}||} = \sin \theta \Rightarrow d = ||\vec{P_0S}|| \sin \theta \\
C & \quad \vec{\n} \quad \frac{d}{||\vec{P_0S}||} \quad \frac{d}{||\vec{\n}||} \quad \frac{d}{||\vec{P_0S} \times \vec{\n}||} \quad \frac{d}{||\vec{\n}||} \quad \frac{d}{||\vec{P_0S} \times \vec{\n}||} \quad \frac{d}{||\vec{\n}||} \quad \frac{d}{||\vec{P_0S} \times \vec{\n}||} \\
\end{align*}
\]

\[
\therefore d(S, C) = \frac{||\vec{P_0S} \times \vec{\n}||}{||\vec{\n}||}, P_0 \in \mathcal{L}
\]

\(\text{cont.} \)
Now let's see how you do it. Assume you've been given S and C in parametric form.

1. If

$$C = \begin{cases} x = x_0 + ta \\ y = y_0 + tb \\ z = z_0 + tc \end{cases} \quad t \in \mathbb{R}$$

Remember $P_0(x_0, y_0, z_0)$ is a point on the line, and $\vec{v} = \langle a, b, c \rangle$ is parallel to C.

2. Here's an example: Find the distance from $S(1, 2, 3)$ to the line C, given by $x = 2t$, $y = 1-t$, $z = -2+3t$, $t \in \mathbb{R}$.

Solve:

- a) $P_0(0, 1, -2)$

b) $\overrightarrow{PS} = \langle 1, 1, 5 \rangle$

c) $\vec{v} = \langle 2, -1, 3 \rangle$

d) $\overrightarrow{PS} \times \vec{v} = \langle 3+5, 10-3, -1-2 \rangle = \langle 8, 7, -3 \rangle$ or

$$\overrightarrow{PS} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 5 \\ 2 & -1 & 3 \end{vmatrix} = (3+5)\hat{i} - (3-10)\hat{j} + (-1-2)\hat{k} = 8\hat{i} + 7\hat{j} - 3\hat{k}$$

e) $\| \overrightarrow{PS} \times \vec{v} \| = (64 + 49 + 9)^{\frac{1}{2}} = (122)^{\frac{1}{2}}$

f) $\| \vec{v} \| = (4 + 1 + 9)^{\frac{1}{2}} = (14)^{\frac{1}{2}}$

g) $d(S, C) = \frac{\| \overrightarrow{PS} \times \vec{v} \|}{\| \vec{v} \|} = \frac{(122)^{\frac{1}{2}}}{(14)^{\frac{1}{2}}} = \left(\frac{122}{14}\right)^{\frac{1}{2}} = \left(\frac{61}{7}\right)^{\frac{1}{2}}$ exact.

h) $d(S, C) = \left(\frac{61}{7}\right)^{\frac{1}{2}}$ units (exact)