§12.2: p. 845: # 41: LINEAR COMBINATION. Let \(\vec{u} = 2\vec{e} + \vec{j} \) and \(\vec{v} = \vec{e} + \vec{j} \) and \(\vec{w} = \vec{e} - \vec{j} \). Find scalars \(a \) and \(b \) such that

\[\vec{u} = a\vec{v} + b\vec{w} \]

So,

1. I'll use "\(\langle \cdot, \cdot \rangle \)" notation in my work area to save writing.

2. Assume we have found \(a \) and \(b \), but we don't know yet what they are, i.e., Assume \(a \) and \(b \) exist.

Then

\[\vec{u} = a\vec{v} + b\vec{w} \]

or

\[\langle 2, 1 \rangle = a\langle 1, 1 \rangle + b\langle 1, -1 \rangle \]

\[= \langle a, a \rangle + \langle b, -b \rangle \]

\[= \langle a+b, a-b \rangle \]

3. Now two vectors are equal iff they are component-wise equal.

\[\therefore \begin{align*}
 a+b &= 2 \\
 a-b &= 1
\end{align*} \]

\(a+b = 2 \) is a system of 2 eq's in 2 unknowns.

\(a-b = 1 \) Solution is easy.

4. \[\begin{align*}
 a+b &= 2 \\
 a-b &= 1
\end{align*} \]

\[2a = 3 \]

\[a = \frac{3}{2} \] and (by observation) \(b = \frac{1}{2} \)

5. \[\vec{u} = \frac{3}{2} \vec{v} + \frac{1}{2} \vec{w} \]