THEME: We have gone over the basic properties of vectors. But let me remind you that vectors have two distinguishing characteristics: magnitude and direction.

PART 1: We can isolate (and focus on) the magnitude of a vector by considering its “norm.” We symbolize this as follows: If \(\mathbf{a} \) is a vector, then its magnitude (or norm) is a real number which is indicated by \(\| \mathbf{a} \| \). An interesting (and deep) observation is that the process of “taking” or “finding” or “computing” the magnitude of a vector is a functional process or operation. That is,

\[
m(\mathbf{a}) = \| \mathbf{a} \| \tag{1.1}
\]

where \(m \) is the magnitude function, \(\mathbf{a} \) is an “element” of the vector space \(\mathcal{V} \) (\(\mathbf{a} \in \mathcal{V} \)) and the output value is a real number (\(\| \mathbf{a} \| \in \mathbb{R} \)). Another often-used way of showing such a functional relationship is

\[
\mathcal{V} \xrightarrow{\| \cdot \|} \mathbb{R}
\quad \mathbf{a} \xrightarrow{\| \cdot \|} \| \mathbf{a} \| \tag{1.2}
\]

indicating that the function \(\| \cdot \| \) “takes” a vector on the left and transforms it into the real number on the right.

One of the obvious, but very important properties of “norm” is this:

\[
\| \mathbf{a} \| = 0 \iff \mathbf{a} = \mathbf{0} \tag{1.3}
\]

That is, “the magnitude of a vector is zero if and only if the vector is the zero vector.”\(^2\)

There are three other “defining” properties of the magnitude or norm of a vector. You might as well internalize them (don’t just memorize them – internalize them!):

\begin{itemize}
 \item \(\forall \mathbf{a} \in \mathcal{V}, \; \| \mathbf{a} \| \geq 0. \)
 \item \(\forall \alpha \in \mathbb{R}, \forall \mathbf{a} \in \mathcal{V}, \; \| \alpha \mathbf{a} \| = |\alpha| \| \mathbf{a} \| \) where \(|\alpha| \) indicates the usual absolute value of the real number \(\alpha \), \(|\alpha| = \sqrt{\alpha^2} \).
 \item \(\forall \mathbf{a}, \mathbf{b} \in \mathcal{V}, \; \| \mathbf{a} + \mathbf{b} \| \leq \| \mathbf{a} \| + \| \mathbf{b} \|. \) (triangle inequality)
\end{itemize}

\(^1\) Note: We often write \(\mathbf{a} \in \mathcal{V} \) instead of \(\mathbf{a} \in \mathcal{V} \).

\(^2\) Please, please notice that there is a very important difference between the real number zero, 0, and the zero vector, \(\mathbf{0} \).
PART 2: Suppose that \(a \) is a “non-zero vector” \((a \neq 0) \), then we can multiply \(a \) by the reciprocal of its magnitude. The result is a vector, we’ll call it \(u \). The important thing here is that the magnitude of \(u \) is 1. \(u \) is what we call a “unit vector.” The vector \(u \) focuses on and highlights the direction of the vector \(a \). The vector \(u \) is called “the direction of the vector \(a \).”

Let’s prove that if \(a \) is a non-zero vector, then \(\| u \| = 1 \).

Proof:

1. \(a \neq 0 \quad \therefore \quad \| a \| \neq 0 \quad \therefore \quad \frac{1}{\| a \|} \in \mathbb{R} \).

2. \(u = \frac{1}{\| a \|} a \quad \therefore \quad \| u \| = \frac{1}{\| a \|} \| a \| = \frac{1}{\| a \|} \| a \| = \frac{1}{\| a \|} = 1 \). \qed

How about a picture?

![Diagram of vectors]

CONCLUSION: Now also note the trivial observation that \(a = \| a \| u \). But what does this really mean? It means that we can break down any non-zero vector into its two defining characteristics – its magnitude, \(\| a \| \), and its direction, \(u \). And this really is not trivial; it is important.