Problem 6

Given the sequence \(a_n = \frac{(-1)^n n}{(n+1)^2} \), find the limit of the sequence as \(n \to \infty \).

Solution

\[a_n = \frac{(-1)^n n}{(n+1)^2} \]

The sequence \(a_n \) converges to \(-\frac{2}{3}\).

Problem 7

Consider the series \(\sum_{n=1}^{\infty} \frac{2}{n^2+1} \).

Solution

This series converges by the integral test.

Problem 8

Use the integral test to determine whether the series \(\sum_{n=1}^{\infty} \frac{2}{n^2+1} \) converges.

Solution

The integral test shows that the series converges.

Problem 9

Consider the series \(\sum_{n=1}^{\infty} \frac{1}{n^2} \).

Solution

This is a convergent p-series with \(p = 2 > 1 \).

Problem 10

Consider the series \(\sum_{n=1}^{\infty} \frac{1}{n^2} \).

Solution

The series converges by the integral test.

Problem 11

Consider the series \(\sum_{n=1}^{\infty} \frac{1}{n} \).

Solution

This series diverges by the integral test.

Problem 12

Consider the series \(\sum_{n=1}^{\infty} \frac{1}{n} \).

Solution

This series diverges by the integral test.

Problem 13

Consider the series \(\sum_{n=1}^{\infty} \frac{1}{n^2} \).

Solution

The series converges by the integral test.
4. Consider \(\frac{n+1}{n^2} = \frac{n+1}{n} \rightarrow 1 \) as \(n \rightarrow \infty \).

Since \(\frac{2+n}{n^2} \) diverges, it follows by the LCT that \(\sum_{n=1}^{\infty} \frac{2+n}{n^2} \) diverges.

5. Conv/Div. \(\sum_{n=1}^{\infty} (-1)^n \frac{2n}{4n^2+1} \)

Solution: This is an Alternating Series. \(b_n = \frac{2n}{4n^2+1} \).

2. \(b_n > 0 \) and \(b_n > b_{n+1} \) for all \(n = 1, 2, 3, \ldots \).

\[b_1 = \frac{2}{5}, \quad b_2 = \frac{4}{17}, \quad b_3 = \frac{6}{37}, \quad \text{etc.} \]

Or take derivative of \(f(x) = 2x/(4x^2+1) \).

3. \(\frac{2n}{4n^2+1} \rightarrow 0 \) as \(n \rightarrow \infty \).

By the AST \(\sum_{n=1}^{\infty} (-1)^n \frac{2n}{4n^2+1} \) converges.

Bonus [CA]. [See Next Page]

C.B. 5 pts. \(7428 \times 7 \). Solution: \(7428 \times 7 = 71428 \)

Then \(10000x = 74281428 \) and \(9999x = 71421 \), so \(x = \frac{74281428 - 71421}{9999} \) which reduces to \(\frac{23804}{3333} \).