§14.3 Arc Length & Curvature.

We'll get to this in a minute.

Back up to §14.2: p 893. Tangent Vector.

If \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) is a vector function, then \(\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \) is the tangent vector at \(t \).

Of GREAT importance to us is the unit tangent vector (function), which we shall call the Principal Unit Tangent Vector (function).

PUT vector.

Computing the PUT vector (function).

\[
\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \quad (p 893)
\]

Modified § 14.2: p 897: # 21

Given: \(\mathbf{r}(t) = \langle t, t^2, e^t \rangle \)

Required: \(\mathbf{T}(t), \mathbf{T}'(t), \mathbf{T}''(t), \) and \(\mathbf{T}(t) \times \mathbf{T}''(t), \).

Soln. \[
\mathbf{T}(t) = \frac{1}{\sqrt{1 + 4t^2 + 9t^4}} \langle 1, 2t, 3t^2 \rangle
\]

Find \(\mathbf{T}(t) \).

1. \(\|\mathbf{T}'(t)\| = \sqrt{1 + 4t^2 + 9t^4} \)

2. \[
\mathbf{T}'(t) = \frac{1}{\sqrt{1 + 4t^2 + 9t^4}} \langle 4t, 2, 6t^2 \rangle
\]

3. \[
\mathbf{T}''(t) = \frac{1}{\sqrt{1 + 4t^2 + 9t^4}} \left(\frac{24t^2 - 6t^2}{\sqrt{1 + 4t^2 + 9t^4}} \right)
\]

4. \[
\mathbf{T}'(t) \times \mathbf{T}''(t) = \langle 1, 2t, 3t^2 \rangle \times \langle 0, 2, 6t \rangle
= \langle 12t^2 - 6t^2, 0 - 6t, 2 - 0 \rangle = \langle 6t^2, -6t, 2 \rangle
\]

§14.3 Arc Length & Curvature.

In Calc 2

\[
L = \int_{t=a}^{t=b} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt
\]
\[L = \int_{t=a}^{t=b} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} \, dt. \]

If \(\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = \langle x(t), y(t), z(t) \rangle \)
then the function \(\vec{r} \) traces a space curve.

\[\vec{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle \]

and \(\| \vec{r}'(t) \| = \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2}^{1/2} \)

\[\text{By Subs} \]

\[L = \int_{t=a}^{t=b} \| \vec{r}'(t) \| \, dt \]

\[D = RT \]

\[\text{AFTER CLASS} \]

\[\text{III Worked Example -- 5.14.3 p. 204; #1} \]

Find the length of the curve. \(\vec{r}(t) = \langle 2\sin t, 5t, 2\cos t \rangle, \]
\(-10 \leq t \leq 10.\)

\[\text{Sol} \]

This space curve is a spiral helix w/ y-axis its axis.

2. \(\vec{r}'(t) = \langle 2\cos t, 5, -2\sin t \rangle \)

3. \(\| \vec{r}'(t) \| = \sqrt{4\cos^2(t) + 25 + 4\sin^2(t)}^{1/2} = \sqrt{29}^{1/2} \]

\[L = \int_{t=-10}^{t=10} \| \vec{r}'(t) \| \, dt \] is the formula.

\[L = \int_{t=-10}^{t=10} 29^{1/2} \, dt = 29^{1/2} \left[t \right]_{t=-10}^{t=10} = 29^{1/2} \left[10 - (-10) \right] = 20 \cdot 29^{1/2} \text{ linear units.} \]

\[L = 20 \cdot 29^{1/2} \text{ units.} \]