Interesting Concept from §17.2 which MAY be on Test #04. — center of mass of a wire! (p. 1100) — Look at it! (Example 3, p. 1101).

Not on Test — but on FINAL is §17.3
Fundamental Theorem of Line Integrals.

Recall FTC pt.II Says if \(f \) is a function which is integrable and if \(F \) is any anti-derivative of \(f \), then

\[
\int_{x=a}^{x=b} f(x) \, dx = F(b) - F(a)
\]

By way of analogy and/or comparison

If \(\vec{F} \) is a vector field which is conservative (so there exists a potential function, \(f \)) such that \(\nabla f = \vec{F} \), then

\[
\int_C \vec{F} \cdot d\vec{r} = \int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))
\]

where \(a \leq \vec{r}(t) \leq b \) describes the path \(C \) and \(f \) is differentiable and \(\nabla f \) is continuous on \(C \).

Example: §17.3: p. 117: #3

Determine if \(\vec{F} \) is conservative, if it is, find a potential function i.e. \(f \) s.t. \(\nabla f = \vec{F} \).

\[\vec{F}(x,y) = (6x+5y)\hat{i} + (5x+4y)\hat{j} \]

Solution:

\[\vec{F}(x,y) = P(x,y)\hat{i} + Q(x,y)\hat{j} \]

Criterion for existence of a potential fun, \(f \) is

\[\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \]

1. Check \(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \).

\[P(x,y) = 6x+5y \quad \frac{\partial P}{\partial y} = 5 \quad Q(x,y) = 5x+4y \quad \frac{\partial Q}{\partial x} = 5 \]

2. \(f(x,y) = \int P \, dx = \int (6x+5y) \, dx = 3x^2 + 5xy + g(y) \)

3. \(Q(x,y) = \frac{\partial f}{\partial y} \quad \text{MUST} \)

\[5x+4y = 5x + g'(y) \Rightarrow g'(y) = 4y \Rightarrow g(y) = 2y^2 + C \]

4. \(f(x,y) = 3x^2 + 5xy + 2y^2 + C \) is the potential function.