\[\vec{r}(t) = [(v_0 \cos \alpha) \hat{i} t + (v_0 \sin \alpha) t - \frac{1}{2} gt^2] \hat{j} \]

Ideal Projectile Motion Equation (Model).

Extra Equations. (p. 907)

- **Max Ht.**
 \[y_{\text{max}} = \frac{(v_0 \sin \alpha)^2}{2g} \]

 Take the vertical component of position
 \[y(t) = (v_0 \sin \alpha) t - \frac{1}{2} gt^2 \]
 Take \(y'(t) = v_0 \sin \alpha - gt \) set \(t = t_{\text{max}} \) and solve
 \[t_{\text{max}} = \frac{v_0 \sin \alpha}{g} \]

 So
 \[y(t_{\text{max}}) = \frac{1}{2} g \left(\frac{v_0 \sin \alpha}{g} \right)^2 - \frac{1}{2} g \left(\frac{v_0 \sin \alpha}{g} \right)^2 = \frac{(v_0 \sin \alpha)^2}{2g} - \frac{(v_0 \sin \alpha)^2}{2g} = \frac{(v_0 \sin \alpha)^2}{2g} \]
2. How far it goes?

\[\vec{r}(t) = (v_0 \cos \alpha) t \hat{i} + (v_0 \sin \alpha) t - \frac{1}{2} gt^2 \hat{j} \]

"Far" = "x" I want to know the value(s) of x when y = 0

Find \(t_{\text{max}} \) by setting \(y = 0 \)

\[(v_0 \sin \alpha) t - \frac{1}{2} gt^2 = 0\]

\[t \left[v_0 \sin \alpha - \frac{1}{2} gt \right] = 0\]

\[\therefore \text{ Either } (t = 0) \text{ or } \left(v_0 \sin \alpha - \frac{1}{2} gt = 0 \right) \]

\[\therefore \left(t = \frac{2v_0 \sin \alpha}{g} \right) \]

\[\therefore \left(x = \frac{v_0 \cos \alpha}{g} \right) \]

\[\therefore \left(x = \sin (2\alpha) \frac{v_0^2}{g} \right) \]

I'll put some MML-HW on line.