We discussed open connected regions and simple, positively oriented closed curves.

A problem from §16.2.

§16.2: p. 1143: # 25 Find the circulation and the flux. \(\mathbf{F} = \langle x, y \rangle \)

around and across the closed path \(C_1 U C_2 \)

\(C_1: \mathbf{F}_1(t) = \langle a \cos t, a \sin t \rangle \quad 0 \leq t \leq \pi \)

\(C_2: \mathbf{F}_2(t) = \langle t, 0 \rangle \quad -a \leq t \leq a \)

Solve

2 Circulation

a \(C_1: \mathbf{F} = \langle a \cos t, a \sin t \rangle, \quad C_2: \mathbf{F} = \langle t, 0 \rangle \)

b Circ: \[\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} \]

\[= \int_{t=0}^{t=\pi} \langle a \cos t, a \sin t \rangle \cdot \langle -a \sin t, a \cos t \rangle \, dt \]

\[+ \int_{t=-a}^{t=a} \langle t, 0 \rangle \cdot \langle 1, 0 \rangle \, dt \]

\[= \int_{t=0}^{t=\pi} (-a^2 \cos t \sin t + a^2 \sin t \cos t) \, dt + \int_{t=-a}^{t=a} t \, dt \]

\[= 0 + \left[\frac{t^2}{2} \right]_{t=-a}^{t=a} = 0 + 0 = 0 \]

C: The circulation is 0. along \(C_1 \).
3 Flux. The flux integral is \(\int_C \vec{F} \cdot d\vec{n} \, dt \) but the working formula (p. 1141) is

\[
\int_C (M \, dy - N \, dx)
\]

\(\vec{F} = \langle M, N \rangle \)

\[\text{on } C_1: \vec{r}_1 = \langle \cos t, \sin t \rangle \]

\[
M = \cos t \quad N = \sin t \\
dx = -\sin t \, dt \\
dy = \cos t \, dt
\]

\[\text{on } C_2: \vec{r}_2 = \langle t, 0 \rangle \]

\[
M = t \\
N = 0 \\
dx = dt \\
dy = 0
\]

\[\text{Flux: } \int_C M \, dy - N \, dx = \int_{C_1} M \, dy - N \, dx + \int_{C_2} M \, dy - N \, dx
\]

\[
= \int_{t=0}^{t=\pi} (\cos t \cos t + \sin t \sin t) \, dt \\
+ \int_{t=-\pi}^{t=\pi} t \, dt - 0 \, dt
\]

\[
= a^2 \int_{t=0}^{t=\pi} 1 \, dt + 0 = \boxed{a^2 \pi}
\]

\[\text{The flux is } a^2 \pi \text{ outward.}\]

A Hypotheses: \(\vec{F} = \langle M, N, P \rangle \) \(M, N, P \) are continuous throughout an open region \(D \) in 3-space.

Then \(\exists \ f \) such that \(\nabla f = \vec{F} \) \(\iff \) for all points \(A, B \in D \)

\[\int_{A}^{B} \vec{F} \cdot d\vec{r} \] is independent of Path.

And if the integral is independent of path, then

\[\int_{A}^{B} \vec{F} \cdot d\vec{r} = f(B) - f(A). \]

\[\int_{(0,0,0)}^{(2,3,-6)} 2xdx + 2ydy + 2zd\!dz \]

Sol:

Is \(2xdx + 2ydy + 2zd\!dz \) exact.
Which means is \(\vec{F} = \langle 2x, 2y, 2z \rangle \) conservative.

\[\frac{\partial M}{\partial y} = 0 \quad \frac{\partial N}{\partial x} = 0 \quad \checkmark \]
\[\frac{\partial M}{\partial z} = 0 \quad \frac{\partial P}{\partial x} = 0 \quad \checkmark \]
\[\frac{\partial N}{\partial z} = 0 \quad \frac{\partial P}{\partial y} = 0 \quad \checkmark \]

\[\therefore \vec{F} \text{ is conservative.} \]
\[\therefore \exists \text{ a potential function, } f \text{ such that } \nabla f = \vec{F} \]
After-Class Continuation...

2. \[f(x, y, z) = \int 2x \, dx = x^2 + g(y, z) \] (*)

b. By theory \(N = \frac{\partial f}{\partial y} \). By the above \(\frac{\partial f}{\partial y} = 0 + \frac{\partial g}{\partial y} \).

By the "problem" \(N = 2y \)

\[\therefore \frac{\partial g}{\partial y} = 2y \quad \text{Thus} \quad g(y, z) = y^2 + g_1(z) \] (**)

And combining (*) and (**) we get

\[f(x, y, z) = x^2 + y^2 + g_1(z) \] (***)

c. By theory \(P = \frac{\partial f}{\partial z} \). By (***), \[\frac{\partial f}{\partial z} = \frac{\partial g_1}{\partial z} \, . \]

By the "problem" \(P = 2z \) \[\therefore \frac{\partial g_1}{\partial z} = 2z \quad \text{and} \quad \text{it follows that} \quad g_1(z) = z^2 + C \] (x).

d. So... \[f(x, y, z) = x^2 + y^2 + z^2 + C \]

3. By FTLI if \(A(0, 0, 0) \) \& \(B(2, 3, -6) \)

\[\int_A^B 2x \, dx + 2y \, dy + 2z \, dz = f(B) - f(A) = 2^2 + 3^2 + (-6)^2 - 0 \]

\[= 4 + 9 + 36 = 49 \]