
A #24 \[\frac{10}{1 + e^{-x}} = 2 \]

Sol. Correct to 4 decimals.

1 Clear frac. \[10 = 2(1 + e^{-x}) \]

Simp. \[5 = 1 + e^{-x} \quad \therefore \quad 4 = e^{-x} \]

\[\therefore \quad 4 = \frac{1}{e^x} \Rightarrow 4e^x = 1 \Rightarrow e^x = \frac{1}{4} \]

2 Solve for \(x \) by "taking" the logarithm of b.s.

\[\ln(e^x) = \ln\left(\frac{1}{4}\right) \]

\[x = \ln\left(\frac{1}{4}\right) = \ln 1 - \ln 4 = -\ln 4 \]

3 \[\left\{ \ln \frac{1}{4} \right\} \quad \text{or} \quad \left\{ -\ln 4 \right\} \quad \text{EXACT} \]

4 Calc Approx. \(x \approx -1.386294361 \)

5 \[\left\{ -1.3862 \right\} \]

§ 4.5: Modeling, p. 369.

A We'll do

1 Exponential Growth / Decay (p. 370 / p. 373)
2 Richter Scale (log model) (p. 376)
3 pH scale (log) (p. 376).

B Exponential Growth.

1 Equation plus some constraints on the input variable.
2. Model. \(n(t) = n_0 e^{rt} \)

- \(n \) is population (\(n = \) "number") at time \(t \).
- \(t \) is time.
- \(r \) is relative rate of growth (growth rate).
- Usu. given as a percent, \(5\% = 0.05 \).
- \(r = 0.05 \).

- \(n_0 \) is the beginning pop. \(n_0 = n(0) \)

3. You read the problem. You understand what the \(t \), \(r \), and \(n_0 \) are for that problem. You plug & chug.

4. Example: §4.5: p. 379: #1. Answer a bunch of questions about this model. (bact.)

- \(n(t) = 500 e^{0.45t} \) \((t \text{ in hours}) \)
- \(n \) is number of bact.

Q.1. Initial number of bact.

\[500 \] There are initially 500 bact. present.

Q.2. Rel. growth rate (as percentage)

The relative growth rate is 45%.

Q.3. How many bact. after 3 hrs.

\[n(3) = 500 e^{0.45(3)} \approx 1928.712765 \]

After 3 hrs there are approximately 1929 bact. in population.
In how many hours will the population reach 10,000?

\[n(t) = 500e^{0.45t} \]

We must find \(t \).

Solve Gen. Eq. for \(t \):

\[n = 500e^{0.45t} \]

\[\frac{n}{500} = e^{0.45t} \]

\(\text{Take ln} \)

\[\ln \left(\frac{n}{500} \right) = \ln(e^{0.45t}) = 0.45t \cdot \ln(e) \]

\[= 0.45t \cdot 1 \implies 0.45t = \ln \left(\frac{n}{500} \right) \]

\[t = \frac{1}{0.45} \cdot \ln \left(\frac{n}{500} \right) \]

So if \(n = 10000 \),

\[t = \frac{1}{0.45} \ln \left(\frac{10000}{500} \right) \]

\[t = \frac{1}{0.45} \ln(20) \approx 6.657 \text{ hrs} \text{ or } 6 \text{ hrs } 36 \text{ min} \]

The population reaches 10,000 in just over 6.6 hrs or just over 6 hrs 36 min.