Still doing §10.1

\(x^2 = 4py \) is the NSF for a parabola with vertex at the origin. This parabola is vertical. It opens upward if \(p \) is positive. It opens downward if \(p \) is negative.

The focus is located \([F(0, p)]\).
The eq. of the directrix is \([y = -p]\).

Example \(x^2 = 8y \)

\[
\begin{align*}
\text{I'm seeing } x^2 &= 4py \\
\therefore 4p &= 8 \\
\therefore p &= 2
\end{align*}
\]

\(\therefore F(0, 2) \leftarrow \text{focus.} \)
\(y = -2 \leftarrow \text{directrix} \)

The line \(y = 2 \) must intersect our parabola in two points. Let's see where this happens.

System \(\begin{cases}
x^2 = 8y \\
y = 2
\end{cases} \rightarrow x^2 = 8(2) = 16 \therefore (x = \pm 4) \)

And when \(x = 4, y = 2 \) and when \(x = -4, y = 2 \).
So the points of intersection are \((4, 2)\) and \((-4, 2)\).
The line segment from \((-4,2)\) to \((4,2)\) is called the **latus rectum**.
The length of the latus rectum is called the **focal length of the parabola**.

What is the f.l. of this parabola? *Ans.* \([8 \text{ units}]\)

Notice NSF \(x^2 = 8y\)

f.l. = \(|4p|\)

Problem: §10.1: p.751: #27: Find eq. \((NSF)\) for parabola w/ vertex @ origin and.

\[F(-8,0) \]

Solu: \[
\begin{align*}
\text{Ans} & : y^2 = -32x \\
\text{f.l.} & = |4p| = |-32| = 32
\end{align*}
\]

#32 Same instructions Directrix \(x = -\frac{1}{8}\)

Solu: \[
\begin{align*}
\text{F(1/8,0) opens right (horiz)} & : y^2 = 4px \\
& \begin{cases}
\text{F(1/8,0) opens right (horiz)} & : x^2 = 4py \\
& y^2 = \frac{1}{2}x
\end{cases}
\end{align*}
\]