I. Quiz #2-7

1. Formula for rectangle area. \(A = L \cdot W \)

2. Formula for trapezoid area.

3. Justify (2).

4. \[A = \frac{1}{2} (B + b)h = \frac{B + b}{2} \cdot h \]

3

\[A_R = B \cdot h \]

\[A_{\text{Area away from } \frac{h}{2}} = B \cdot h - b \cdot h \]

\[A_{\text{ta.}} = \frac{1}{2} (B \cdot h - bh) \]

\[\therefore \text{Area Trap. } A_T = A_R - A_{\text{ta.}} = Bh - \frac{1}{2} (Bh - bh) \]

\[= Bh - \frac{1}{2} Bh + \frac{1}{2} bh = \frac{1}{2} Bh + \frac{1}{2} bh = \frac{1}{2} h (B + b) \]

II. § 8.7 Numerical Integration, (p. 587)

<table>
<thead>
<tr>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>[y = f(x)]</td>
</tr>
</tbody>
</table>

\[n \text{- subintervals of equal width } \Delta x \]

\[\Delta x = \frac{b - a}{n} \]

\[x_0 = a, \ x_n = b \]

\[x_0 = a, \ x_1 = a + \Delta x, \ x_2 = a + 2\Delta x, \ldots, \ x_i = a + i\Delta x, \ldots, \ x_n = a + n\Delta x \]
So \(x_n = a + n \Delta x = a + n \left(\frac{b-a}{n} \right) = a + b - a = b \)

\[\mathcal{P}_n = \{ x_0, x_1, x_2, \ldots, x_n \} \quad \text{w/} \quad x_{i-1} < x_i \quad i = 1, 2, \ldots, n \]

A partition \(\mathcal{P} \) of \(I = [a, b] \) \((x_0 = a \land x_n = b) \)

END