I. We discussed the material on hyperbolas that I added at the end of yesterday's notes.

II. §10.2: Eccentricity (681)

A. A circle is an ellipse w/ $c = 0$.

Now, what is c?

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b)$$

$$c = \sqrt{a^2 - b^2}$$

So if $c = 0$, then $a^2 = b^2$

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$

Clear fractions $x^2 + y^2 = a^2$ \iff Graph is a circle $C(0,0)$ $r = a$

B. If $c = a$,

$$a = \sqrt{a^2 - b^2} \quad a^2 = a^2 - b^2 \quad b = 0$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad b^2 x^2 + a^2 y^2 = a^2 b^2$$

$$a^2 y^2 = 0 \quad y = 0$$

But Graph of $y = 0$ is x-axis!

"Ellipse II is just a line segment."
\[e = \frac{c}{a} \quad \text{For ellipse: } e = \frac{\sqrt{a^2 - b^2}}{a} \]

Eccentricity.

\[e = \frac{\sqrt{a^2 + b^2}}{a} \quad \text{For hyperbola} \]

Woops! Nobody has read my stuff about the PARABOLA — so we have to "review."
opens to the RIGHT. And if you end up with this parabola opens to the left.

\[y^2 = -4px \] (4)

3. So the form (1), (2), (3), or (4) tells you which way the parabola OPENS.
And it seems like the larger the number \(p \) becomes, the wider the parabola opens. Try it on your graphing calculator with a Type (1) parabola and \(p = 1, 2, 3 \)

\[x^2 = 4py \] so \(y = x^2/(4p) \)

4. The "p" also gives us the information needed to locate the focus \(F \) and the directrix \(L \).

\[F(0, p) \text{ or } F(0, -p) \text{ or } F(p, 0) \text{ or } F(-p, 0) \text{ and } L: y = -p \text{ or } y = p \]

5. Example: Find the eq. for the parabola with vertex at the origin and with directrix \(x = 12 \). Also Graph it neatly.

Sol: (a) If directrix : \(x = 12 \) and V(0,0) is the vertex, then I conclude that the parabola opens to the \(\text{left} \) \(\& \ F(-12, 0) \) is the focus. \(\therefore \) The parabola is Type (4)

\[y^2 = -4px \]

(b) \(p = 12 \), so \(y^2 = -48x \) is the Std. Form eq. for the parabola.

(c) I'll leave it to YOU to graph it! \[\boxed{\text{I}} \]

\[\boxed{\text{I}} \]