I
On Calculator: \[r_1 = \{1, -1\} \sqrt{2} \sin(3\theta) \]
On Paper: \[r_1 = \pm \sqrt{2} \sin 3\theta \]
\[r_1^2 = 2 \sin 3\theta \] "missing" some pieces of graph!?

II
\[\S 10.7 : \text{p. 714 : #3} \]
Find the area of one "leaf" of \(r = \cos 2\theta \)

Solu: \[3 \]

Find Area of "Half-a-Leaf" and double it.

II
\(A_{\text{leaf}} = ? \)
What is the formula? See III below for formula!

III
Formula for Area:

2
Formula for a Circular Sector: \[A = \frac{1}{2} r^2 \theta \] \(\theta \) in radians

3
In Fig. 1.
\[A_k = \frac{1}{2} r_k^2 \Delta \theta_k \] where \(\Delta \theta_k = \theta_k - \theta_{k-1} \)

4
\[A \approx \sum_{k=1}^{n} A_k = \sum_{k=1}^{n} \frac{1}{2} r_k^2 \Delta \theta_k \]
Take limit as \(n \to \infty \), we see (if limit exists) \[A = \int_{\theta_1}^{\theta_2} \frac{1}{2} r^2 \, d\theta = \int_{\theta_{\alpha}}^{\theta_{\beta}} \frac{1}{2} [f(\theta)]^2 \, d\theta \]

B
Now continue II w/ this formula.
Continuation:

\[A_{\text{leaf}} = 2 \int_{\Theta = 0}^{\Theta = \pi/4} \frac{1}{2} \left[\cos(2\Theta) \right]^2 d\Theta \]

\[= \frac{1}{2} \int_{\Theta = 0}^{\Theta = \pi/4} (1 + \cos(4\Theta)) d\Theta \]

\[= \frac{1}{2} \left\{ \Theta + \frac{1}{4} \sin(4\Theta) \right\} \bigg|_{\Theta = 0}^{\Theta = \pi/4} \]

\[= \frac{1}{2} \left\{ \left(\frac{\pi}{4} + 0 \right) - (0) \right\} = \frac{\pi}{8} \text{ units}^2 \]

Length of Polar Curve. (p. 712).

\[L = \int_{\Theta = \alpha}^{\Theta = \beta} \sqrt{\left(\frac{dx}{d\Theta} \right)^2 + \left(\frac{dy}{d\Theta} \right)^2} \ d\Theta \]

Known formula

\[T: \begin{cases} x = f(\Theta) \cos \Theta \\ y = f(\Theta) \sin \Theta \end{cases} \]

where \(r = f(\Theta) \)

and \(\alpha \leq \Theta \leq \beta \).

\[\frac{dx}{d\Theta} = f(\Theta) (-\sin \Theta) + f'(\Theta) \cos \Theta = f(\Theta) \cos \Theta - f(\Theta) \sin \Theta \]

\[(\frac{dx}{d\Theta})^2 = \left(f'(\Theta) \right)^2 \cos^2 \Theta - 2 f'(\Theta) f(\Theta) \sin \Theta \cos \Theta + (f(\Theta))^2 \sin^2 \Theta \]

and \[\frac{dy}{d\Theta} = f(\Theta) \cos \Theta + f'(\Theta) \sin \Theta \]

\[(\frac{dy}{d\Theta})^2 = \left(f'(\Theta) \right)^2 \cos^2 \Theta + 2 f'(\Theta) f(\Theta) \sin \Theta \cos \Theta + (f'(\Theta))^2 \sin^2 \Theta \]
So \((dx)^2 + (dy)^2 \)

\[\begin{align*}
&= (f'(\theta))^2 \cos^2 \theta - 2f'(\theta)f(\theta) \sin \theta \cos \theta + (f(\theta))^2 \sin^2 \theta \\
&\quad + (f'(\theta))^2 \sin^2 \theta + 2f'(\theta)f(\theta) \sin \theta \cos \theta + (f(\theta))^2 \cos^2 \theta \\
&= (f'(\theta))^2 \cos^2 \theta + (f'(\theta))^2 \sin^2 \theta + (f(\theta))^2 \cos^2 \theta + (f(\theta))^2 \sin^2 \theta \\
&= (f'(\theta))^2 + (f(\theta))^2 = (f(\theta))^2 + (f'(\theta))^2
\end{align*}\]

which is also equal to \(r^2 + (\frac{dr}{d\theta})^2 \).

D So the "formula" for the length of a polar curve is

\[L = \int_{\theta = \alpha}^{\theta = \beta} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} \, d\theta\]

IF \(r = f(\theta) \) has a continuous 1st derivative for \(\alpha \leq \theta \leq \beta \) and

IF the point \(P(r, \theta) \) traces the curve \(r = f(\theta) \) exactly once as \(\theta \) runs from \(\alpha \) to \(\beta \).