Section 11.2: Permutations finished (Objectives 1 - 4)
(Permutations & Combinations)
We got to the middle of Page 2 on Tue. 11/10/09 - djj

Permutation: an ordered arrangement of a set of items (no repetition allowed).

ex. In how many ways can 6 children line up to walk to the library?
\[6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720 \]

“Count-down”

What if the teacher's pet, Carolyn, is always the leader?
\[1 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120 \]

ex. How many ways are there to seat 7 students in the 7 desks of row 1?
\[7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 7! = 5040 \]

Write this product as 7! Use calculator key \[\text{x!} \].
Factorial: \(n! = n(n-1)(n-2) \ldots (3)(2)(1) \). It determines the number of permutations of \(n \) distinct items.

Note: \(0! = 1 \)

\[
0! = 1 \quad \text{BY DEF.}
\]

ex. I want to arrange 4 photos in a row on my desk. How many arrangements are possible?

\[
\begin{array}{cccc}
4 & 3 & 2 & 1 \\
\end{array}
\]

\[= \boxed{24}\]

ex. Evaluate:

\[
\frac{12!}{10!} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \ldots 3 \cdot 2 \cdot 1}{10 \cdot 9 \cdot 8 \ldots 3 \cdot 2 \cdot 1} = \boxed{132}
\]

\[
\frac{8!}{(8-5)!} = \frac{8 \cdot 7 \cdot 6 \ldots 1}{3 \cdot 2 \cdot 1} = \boxed{6720}
\]

GOT TO HERE TUE 11/10/09 === Start Thu. 11/12 ==

Permutations can use **all** the elements of a given set or **only a certain number** of them.

ex. I have 24 photos of my trip to Yellowstone National Park. I only have room for 3 frames on my desk. In how many ways can the photos be selected and arranged in row on my desk?

\[
\begin{array}{c}
24 \\
23 \\
22 \\
\end{array}
\]

\[= \boxed{12144}\]
This formula counts the number of ways to choose (without replacement) and then arrange, r items out of n distinct items.

\[n \text{P}_r = \frac{n!}{(n-r)!} \]

ex. Use the permutation formula to do the previous "Yellowstone" example.

\[7 \text{P}_7 = 7! = 5040 \]

Note: \(n \text{P}_n = n! \).

ex. Use the permutation formula to do the previous "7 students seated in 7 desks" example.

A television network must schedule 6 half-hour programs during prime-time (7 - 10 pm). If there are 9 programs to choose from, how many program schedules are possible?

\[9 \text{P}_6 = 60480 \]

\[9 \text{P}_6 = \frac{9!}{(9-6)!} = \frac{9!}{3!} = \frac{9 \times 8 \times 7 \times 6 \times 5 \times 4}{3!} = 60480 \]
ex. How many permutations are there of the letters in "CAT"?
\[CAT \quad TAC \quad TCA \quad ACT \quad ATC \]
\[_3 P_3 = 3! = 6 \]

ex. How many permutations are there of the letters in "ALL"?

Permutations of Duplicate Items

The number of permutations of \(n \) items, where \(p \) items are identical, \(q \) items are identical, \(r \) items are identical, etc. is given by

\[\frac{n!}{p!q!r!...} \]

ex. How many distinct ways can the letters of the word "coffeecake" be arranged? (It's a word, so order is imp.)
\[n = 10 \quad \frac{10!}{2!2!3!} = \frac{10!}{24} = 151200 \]

ex. How many distinct ways can the letters of the word "Tallahassee" be arranged?
\[\frac{11!}{3!2!2!2!} = \frac{11!}{48} = 831600 \]

See text ex. 1 - 6.
In how many ways can one arrange the letters of the word "ALL"?

\[
\frac{n!}{P!} = \frac{3!}{2!} = \frac{6}{2} = 3
\]

How many distinct words can be made from the letters of "ALL"?

3