Section 3.6: Arguments and Truth Tables
(Objectives 1-2)

DEDUCTIVE ARGUMENTS

Argument: consists of given statements called premises and a conclusion.

Valid Argument: conclusion must follow from the given set of premises.

Invalid Argument (or fallacy): conclusion doesn't necessarily follow from given premises.

To determine if an argument is valid, write it in symbols and analyze the symbol pattern.

ex: If I am sleeping, then I am breathing.
 p → q
 I am asleep.
 p
 ∴ I am breathing.
 ∴ q

The argument is valid if the conjunction of the premises implies the conclusion for all cases. (TAUTOLOGY)
Valid Argument: conclusion **must** follow from the given set of premises.

DEDUCTIVE

Invalid Argument (or fallacy): conclusion doesn't necessarily follow from given premises.

<table>
<thead>
<tr>
<th>FORM (STRUCTURE)</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Valid</td>
<td>TRUTH VALUES of Premise(s) and Conclusion.</td>
</tr>
<tr>
<td>2. Invalid</td>
<td></td>
</tr>
</tbody>
</table>
Construct a truth table for \((p \rightarrow q) \land p \rightarrow q\).

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p \rightarrow q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

This is a valid argument!

Please see the next page for the entire Truth Table.

The truth of the conclusion does not determine validity. The form of the argument determines validity. In a valid argument, if the premises are true, the conclusion must also be true. A valid argument with true premises is called a sound argument.

ex. If you live in Miami, then you wear a heavy coat every day.
 You live in Miami.
 \(\therefore\) You wear a heavy coat every day.

This is a valid argument. However, the conclusion is not true since the premises are not both true.
Construct a truth table for \([(p \rightarrow q) \land p] \rightarrow q\).

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p\rightarrow q</th>
<th>(p\rightarrow q) \land p</th>
<th>[(p\rightarrow q) \land p] \rightarrow q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

1. 2 3 4

Tautology Arg. is VALID in form.
If an English argument translates into one of these forms, you can immediately determine validity without using truth tables.

<table>
<thead>
<tr>
<th>Direct Reasoning</th>
<th>Contrapositive Reasoning</th>
<th>Disjunctive Reasoning</th>
<th>Transitive Reasoning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \rightarrow q)</td>
<td>(\neg q)</td>
<td>(p \lor q)</td>
<td>(q \rightarrow r)</td>
</tr>
<tr>
<td>(p)</td>
<td>(\therefore \neg p)</td>
<td>(\neg p)</td>
<td>(\therefore p)</td>
</tr>
<tr>
<td>(\therefore q)</td>
<td>(\therefore \neg q)</td>
<td>(\therefore \neg r \lor \neg p)</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{VALID} \]

\begin{align*}
\text{Fallacy of the Converse} & \quad \text{Fallacy of the Inverse} & \quad \text{Misuse of Disjunctive Reasoning} & \quad \text{Misuse of Transitive Reasoning} \\
\text{Invalid} & \quad \text{Invalid} & \quad \text{Invalid} & \quad \text{Invalid} \\
\therefore p & \quad \therefore \neg q & \quad \therefore \neg q & \quad \therefore \neg p & \quad \therefore \neg p \\
\therefore \neg p & \quad \therefore q & \quad \therefore q & \quad \therefore r & \quad \therefore \neg r \\
\end{align*}

\[\text{INVALID} \]
Valid Form

ex. If I'm sleeping, then I'm breathing. \(p \rightarrow q \)
 I'm sleeping. \(p \)
 \(\therefore \) I'm breathing. \(\therefore q \)

EX. If I'm sleeping, then I'm breathing. \(p \rightarrow q \)
 I'm not breathing. \(\sim q \)
 \(\therefore \) I'm not sleeping. \(\therefore \sim p \)

ex. If I am sick, then I stay in bed. \(p \rightarrow q \)
 If I stay in bed, then I watch TV. \(q \rightarrow r \)
 \(\therefore \) If I am sick, then I watch TV. \(\therefore p \rightarrow r \)

ex. I will go to Publix Monday or Tuesday. \(p \lor q \)
 I did not go to Publix Monday. \(\sim p \)
 \(\therefore \) I went to Publix Tuesday. \(\therefore q \)
Invalid

ex. If I'm sleeping, then I'm breathing. \(p \rightarrow q \)
 I'm not sleeping. \(\sim p \)
 \(\therefore \) I'm not breathing. \(\therefore \sim q \)

ex. If I'm sleeping, then I'm breathing. \(p \rightarrow q \)
 I'm breathing. \(q \)
 \(\therefore \) I'm sleeping. \(\therefore p \)

ex. I will go to Publix Monday or Tuesday. \(p \land q \)
 I went to Publix Monday. \(p \)
 \(\therefore \) I did not go to Publix Tuesday. \(\therefore \sim q \)

ex. If I am sick, then I stay in bed. \(p \rightarrow q \)
 If I stay in bed, then I watch TV. \(q \rightarrow r \)
 \(\therefore \) If I watch TV, then I am sick. \(\therefore r \rightarrow p \)
Drawing Logical or Valid Conclusions

Draw a valid conclusion from the given premises by translating into symbolic form and using valid patterns.

- If Frank buys a car, then he can drive home. \(p \rightarrow q \)
- Frank cannot drive home. \(\sim q \)

Therefore,

- If you study, then you will pass this class. \(p \rightarrow q \)
- If you pass this class, then you can graduate. \(q \rightarrow r \)

Therefore,
If all stores are closed, then no one can shop. \(p \rightarrow q \)
Some one can shop. \(\sim q \)

Therefore,

If you work, then you can pay your bills. \(p \rightarrow q \)
If you can pay your bills, then your credit is good. \(q \rightarrow r \)
Your credit is not good. \(\sim r \)

Therefore,

See text examples 1 - 6. Use Handout on Alternative Truth Table Method for Symbolic Arguments.