
Recall \(\{ f_i \}_{i=1}^n \) is a LD set \(\iff \exists e_i, i=1,\ldots,n \)
\[e_i \text{ at least one } c_i \neq 0 \text{ and } \sum_{i=1}^n c_i f_i(x) = 0 \quad \forall \ x \in I. \]

The implication is that \(\{ f_i \}_{i=1}^n \) is LD on \(I \) \(\iff \) one of the functions can be written as a linear combination of the rest of them.

Example: \(\{ 1, x, x^2, 2x^2 + 3x + 5 \} \) is a LD set on \(I = (-\infty, \infty) \).

Why? B/c
\[2x^2 + 3x + 5 = 5(1) + 3(x) + 2(x^2) \]

2. A set \(\{ f_i \}_{i=1}^n \) on \(I \) is LI (linearly independent) on an interval \(I \) iff it is NOT LD on \(I \).

Meaning (loosely) \(\iff \) The only way for
\[\sum_{i=1}^n c_i f_i(x) = 0 \quad \forall \ x \in I \]
to happen is for \(c_i = 0 \quad \forall \ i \).

Examples: \(\{ e^x, x \} \) is a LI set on \(I = \mathbb{R} \).

Proof: 1. Form linear combo.
\[c_1 e^x + c_2 x = 0 \quad (\ast) \]
2. Take the diff (=derivative) of b.s.
\[c_1 e^x + c_2 = 0 \]
3. Again: \(c_1 e^x = 0 \Rightarrow c_1 = 0 \quad \& \quad c_2 = 0 \)
4. Given (\ast) it follows that \(c_1 \) and \(c_2 \) MUST be zero!
Another Example — Another Technique.

Given \(\{ e^x, x \} \).

Reg'd: Dep or Indep? on \((-\infty, \infty)\)

Solution

1. Form LinComb: \(c_1 e^x + c_2 x = 0 \) (*)

2. Subs \(x = 0 \): \(c_1 e^0 + c_2(0) = 0 \Rightarrow c_1 = 0 \)
 \(\therefore\) \((*)\) becomes \(c_2 x = 0 \)
 Now subs \(x = 1 \): \(c_2 = 0 \)

3. Yada, yada, yada... \(\{ e^x, x \} \) is LinIndep.

Review of "Necessary" and "Sufficient" Conditions.

A. If \(H \), then \(C \): \(H \Rightarrow C \) (Conditional Statement)

 \(\uparrow\) \(\uparrow\)
 Suff. Necess

B. Converse of Conditional: \(C \Rightarrow H \)

C. Note: The validity of any given Conditional Statement does NOT guarantee the validity of its converse.

VI. Wronskian. — The following Thm provides a Sufficient condition for the Linear Independence.
or a set of \(n \) functions \(\{ f_i \}_{i=1,...,n} \) on \(I \).

(Each func. is assumed to be differentiable at least \(n-1 \) times.)

Define

\[
W(f_1, f_2, ..., f_n) = \begin{vmatrix}
 f_1 & f_2 & \ldots & f_n \\
 f_1' & f_2' & \ldots & f_n' \\
 \vdots & \vdots & \ddots & \vdots \\
 f_1^{(n-1)} & f_2^{(n-1)} & \ldots & f_n^{(n-1)}
\end{vmatrix}
\]

\[n \times n \]

to be continued,...