A Bit More of G.S. (§12.3: Ex8, p.802)

Repeating decimal representations.

1. \(0.9\overline{9}\) ← write this as a rational number.

Tech. Sol.

\[0.9 = \frac{9}{10}\]
\[0.99 = \frac{99}{100} = \frac{9}{100} + \frac{90}{100} = \frac{90}{100} + \frac{9}{100}\]
\[= \frac{9}{10} + \frac{9}{100}\]

\[0.999 = \frac{9}{10} + \frac{9}{100} + \frac{9}{1000}\]
\[= \frac{9}{10} + \frac{1}{10} \cdot \frac{9}{100} + \frac{1}{100} \cdot \frac{9}{10}\]

Well, look at \(\frac{\frac{9}{1000}}{\frac{9}{100}} = \frac{\frac{9}{100}}{9} = \frac{1}{10}\) \(\Rightarrow r\)

So what we got is [A] G.S. \(\frac{9}{10}, \frac{9}{100}, \frac{9}{1000}, \ldots\)
and a geom series (infinite)

\[a_n = a_1 r^{n-1}\]

So here \(a_n = \frac{9}{10} \left(\frac{1}{10}\right)^{n-1}\)

\[S_\infty = \frac{a}{1 - r} = \frac{9/10}{1 - \frac{1}{10}} = \frac{\frac{9}{10}}{\frac{9}{10}} = 1\]

\[\therefore 0.9\overline{9} = 1\]
2. Convert (using short cut) to a rational number

\[0.123123123 \]

Solution

1. Let \(x = 0.123123123 \)

2. \(1000x = 123.123123 \)

3. **Diff.**

 \[
 1000x = 123.123123 \\
 - x = -0.123123 \\
 999x = 123 \\
 \therefore \quad x = \frac{123}{999}
 \]

3. Convert \(45.1010 \)

Solution

1. Let \(x = 45.1010 \)

2. \(100x = 451.01010 \)

3. **Sub** \(99x = 446.5 \)

 \[
 \therefore \quad x = \frac{446.5}{99}
 \]

3. §12.4: PMI (Principle of Mathematical Induction)

 (p. 809)

A To prove a theorem by PMI, 3 steps are required.

1. **prove equation is true for** \(n=1 \)

2. **prove that** \([\text{If the eq. is true for } n=k, \text{then the eq. is true for } n=k+1] \)

 (Step 2 is a proof within a proof).
The conclusion that the eq. is true for all natural numbers, \(n \).

\[P(n) \]

B Prove, using PMI, \(1 + 2 + 3 + 4 + \ldots + n = \frac{n(n+1)}{2} \)

Proof

1. Verify the formula for \(n = 1 \)

\[1 = \frac{1 \cdot 2}{2} = 1 \checkmark \]

2. Assume \(P(k) \) is true. Prove \(P(k+1) \) is true.

\[1 + 2 + 3 + \ldots + k + (k+1) = \frac{k(k+1)}{2} \]

Prove: \(1 + 2 + 3 + \ldots + (k+1) = \frac{(k+1)(k+2)}{2} \)

\[\text{Proof within Proof.} \]

\[1 + 2 + 3 + \ldots + (k+1) = 1 + 2 + 3 + \ldots + k + (k+1) \]

\[= (1 + 2 + 3 + \ldots + k) + (k+1) \]

\[= \frac{k(k+1)}{2} + (k+1) \]

\[\text{Subs} \]

\[= \frac{k(k+1) + 2(k+1)}{2} \]

\[= \frac{(k+1)(k+2)}{2} \]

\[\text{Inductive Hypothesis} \]

Therefore \(1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \) is true for all natural numbers \(n \).
3. \[1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \quad \forall n \in \mathbb{Z}^+ \]

where \(\forall = "\text{for all}" \quad \mathbb{Z}^+ = \{1, 2, 3, 4, \ldots\} \)

\[\square \] §12.4; p. 812: #5: Prove Using PMI

\[2 + 5 + 8 + \ldots + (3n-1) = \frac{1}{2} n (3n+1) \]

Proof

1. \(n = 1 \):

\[2 = \frac{1}{2} (1)(3(1)+1) = \frac{1}{2} \cdot 1 \cdot 4 = 2 \checkmark \]

P(1)

2. Pf w/o Pf.

Assume \(P(k) \):

\[2 + 5 + 8 + \ldots + (3k-1) = \frac{1}{2} k(3k+1) \]

Prove \(P(k+1) \):

\[2 + 5 + 8 + \ldots + (3(k+1)-1) = \frac{1}{2} (k+1)(3(k+1)+1) \]

\[= \frac{1}{2} (k+1)(3k+4) \]

Proof

\[2 + 5 + 8 + \ldots + (3(k+1)-1) \]

\[= \left[2 + 5 + 8 + \ldots + (3k-1) \right] + (3(k+1)-1) \]

\[= \left[\frac{1}{2} k(3k+1) \right] + (3(k+1)-1) \]

Subs

\[\frac{k(3k+1)}{2} + \frac{2(3(k+1)-1)}{2} \]

\[= \frac{3k^2 + k + 2(3k+3-1)}{2} = \frac{3k^2 + 7k + 4}{2} \]

\[= \frac{3k^2 + 7k + 4}{2} = \frac{(k+1)(3k+4)}{2} = \frac{1}{2} (k+1)(3(k+1)+1) \]

\[\square \]

3. \[2 + 5 + \ldots + (3n-1) = \frac{1}{2} n (3n+1) \quad \forall n \in \mathbb{Z}^+ \]