Ch 7 - Analytic Trig (p. 526).

A. Discussion of Analytic vs. Synthetic Principles.

B. Ch. Overview (p. 527).

1. Deal w/ Trig Identities, such as \(\cos^2 t + \sin^2 t = 1 \)
2. Deal w/ solving Trig equations, such as
 a. \(\sin t - \frac{1}{2} = 0 \)
 b. Review
 i. Solve \(x + 5 = 4x - 1 \)
 \[\text{Solve} \quad x + 5 = 4x - 1 \]
 \[\text{Solution set:} \quad \{2\} \]
 ii. Solve \(x^2 + 6 = -5x \)
 \[\text{Solve} \quad x^2 + 6 = -5x \]
 \[x^2 + 5x + 6 = 0 \]
 \[(x + 2)(x + 3) = 0 \]
 \[x = -2 \quad \text{or} \quad x = -3 \]
 \[\{-2, -3\} \]

Back to a. \(\sin t - \frac{1}{2} = 0 \) radians
 \[\text{Solve} \quad \sin t = \frac{1}{2} \]
 (Think: sine of what(??) equals \(\frac{1}{2} \)?)
 \[\frac{\pi}{6} \]
 is in the sol. set.

\[\frac{5\pi}{2} \] is in the sol. set.

Also \[\frac{\pi}{6} + 2k\pi \quad k = 0, \pm 1, \pm 2, \pm 3, \ldots \]
\[\frac{5\pi}{6} + 2k\pi \quad k = 0, \pm 1, \pm 2, \pm 3, \ldots \]
The soln set \(\exists t \mid t = \frac{\pi}{6} \pm 2k\pi \) or \(t = \frac{5\pi}{6} \pm 2k\pi \), \(k = 0, 1, 2, 3, \ldots \).

II §7.1: Trig Id. (p. 528)

A. Review Trig ID's -- Chart. (p. 528)
Know this chart.

B. Simplify Trig Expressions (p. 528).

1. See examples in book.

 a. #12. \(\cos^3\theta + \sin^2\theta \cos \theta \)

 Soln. \(\cos^3\theta + \sin^2\theta \cos \theta = \cos \theta (\cos^2\theta + \sin^2\theta) \)

 \(= \cos \theta \cdot 1 = \cos \theta \)

 \(\therefore \cos^3\theta + \sin^2\theta \cos \theta = \cos \theta \)

 b. #22. \(\frac{1 + \cot A}{\csc A} \)

 Soln. \(\frac{1 + \cot A}{\csc A} = \frac{1 + \frac{\cos A}{\sin A}}{\frac{1}{\sin A}} = \sin A \left(1 + \frac{\cos A}{\sin A}\right) \)

 \(= \sin A + \cos A \).

 \(\therefore \frac{1 + \cot A}{\csc A} = \sin A + \cos A. \)

I left early -- we did "Teacher Evaluation" today.