POD #07 / §13.5 : p. 867 : #54 ; Find parametric equations for the line of intersection of the planes

\[T_1: \ 2x + 5z + 3 = 0 \ \wedge \ T_2: \ x - 3y + z + 2 = 0 \]

Solution

1. The line \(L \) of intersection of the planes \(T_1 \) and \(T_2 \) will be orthogonal to the normal vectors of both planes.

 By the way, \(T_1 \) and \(T_2 \) are not parallel and they are not the same plane, as we shall verify in a moment, since \(\vec{n}_1 \times \vec{n}_2 \neq \vec{0} \), as we shall see. Thus \(L \) will be parallel to \(\vec{v} = \vec{n}_1 \times \vec{n}_2 \).

2. Computation:
 \[\vec{v} = \vec{n}_1 \times \vec{n}_2 = \langle 2, 0, 5 \rangle \times \langle 1, -3, 1 \rangle = \langle 15, 3, -6 \rangle \]
 \[= \langle 15, 3, -6 \rangle \]

3. Now we need one point \(P_0 \) on \(L \). So \(P_0 \in T_1 \) and \(P_0 \notin T_2 \).

 Let \(z = 0 \) : \(T_1: \ 2x + 3z = 0 \ \therefore \ x = -\frac{3}{2} \). Therefore,

 looking at \(T_2 \): \((\frac{-3}{2}) - 3y + 0 + 2 = 0 \)
 \[-3 - 3y + 0 = 0 \quad \therefore \ 1 = 6y \quad \therefore \ y = \frac{1}{6} \]

 \[P_0 \left(-\frac{3}{2}, \frac{1}{6}, 0 \right) \in T_1 \cap T_2 \quad (\text{Mental check}) \]

4. Parametric Equations for \(L \in T_1 \cap T_2 \):

 \[x = -\frac{3}{2} + 1t \\
 y = \frac{1}{6} + 3t \\
 z = 0 - 6t \]