NET 8: Evaluate \(\int_C (xy + z) \, ds \)

Where \(C \) consists of \(C_1 \), the line segment from \((0,0,1)\) to \((0,2,0)\) followed by the quarter-circle along \(x^2 + y^2 = 4 \) (in the xy-plane) from \((0,2,0)\) to \((2,0,0)\).

§ 17.3 Fundamental Theorem for Line Integrals, p. 1110.

Hypotheses (Preconditions) (IF's)

1. \(C \): smooth curve given by \(\vec{r}(t) \), \(a \leq t \leq b \)

2. \(f \) must be a differentiable function of two or three variables.

3. \(\nabla f \) is continuous on \(C \)

Conclusion (THEN) \(\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)) \)

In General \(\int_C \vec{F} \cdot d\vec{r} \), \(\vec{F} \) is NOT \(\nabla f \) for some little \(a \).

BIG Pay-Off. Suppose that \(\vec{F} \) is conservative

(i.e., \(\exists f \exists \quad \vec{F} = \nabla f \)). Then FTLI applies

and \(\int_C \vec{F} \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)) \) \(\text{where } a \leq t \leq b \)

on \(C: \vec{r}(t) \).

In this case the line integral is independent of path!!

\[\nabla f = \frac{\partial f}{\partial x} \]

\[\frac{\partial f}{\partial y} = \frac{\partial f}{\partial x} \]

\[\therefore \int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)) \]

\[\int_C \vec{F} \cdot d\vec{r} = 0 \quad \text{for every closed path} C \quad \text{in the domain} D. \]

If \(\int_C \vec{F} \cdot d\vec{r} = \int_{C_2} \vec{F} \cdot d\vec{r} \)

for all \(C_1, C_2 \)

and since

\[\int_{C_2} \vec{F} \cdot d\vec{r} = -\int_{C_2} \vec{F} \cdot d\vec{r} \]

it follows that \(\int_{C_0} \vec{F} \cdot d\vec{r} = 0 \).

\(\therefore \int_{C_0} \vec{F} \cdot d\vec{r} \) is independent of path, \(\text{if and only if} \quad \vec{F} \text{ is conservative} \).

If \(\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j} \) is conservative

and if \(P,Q \) have continuous 1st order partial derivatives,

then throughout the domain \(D \):

\[\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \]
Example: §17.3: p. 118: #13

(a) Find \(\mathbf{F} = \langle x, y \rangle \).

(b) Use to evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \) along \(C \).

\[C : \mathbf{T}(t) = \langle \sqrt{5} t, \sqrt{1+t^2} \rangle, \quad 0 \leq t \leq 1 \]

Solu:

1. Is \(\mathbf{F} \) conservative? (Cauchy Test)

 \[P(x,y) = x^3 y^4, \quad \frac{\partial P}{\partial y} = 4x^3 y^3 \]

 and \(Q(x,y) = x^4 y^3, \quad \frac{\partial Q}{\partial x} = 4x^3 y^3 \]

 \[\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \quad \therefore \mathbf{F} \text{ is conservative!} \]

2. It makes sense to hunt for \(f \).

 \[\mathbf{F} = \nabla f = \langle f_x, f_y \rangle \]

 \[\langle x^3 y^4, x^4 y^3 \rangle \quad \therefore \quad f_x = x^3 y^4 \]

 so, \(f(x,y) = \int f_x(x,y) \, dx = \int x^3 y^4 \, dx = \frac{1}{4} x^4 y^4 + g(y) \)

 \(f(y) = \frac{1}{4} x^4 y^4 + g(y) \) (※)

 But \(f_y(x,y) = x^4 y^3 + g'(y) = x^4 y^3 \quad \therefore \quad g(y) = C \) (finish at home.)
Thus, going back to (4)
\[f(x,y) = \frac{1}{4} x^4 y^4 + C \]

Since \(\vec{F} \) is conservative, we can apply the FTLI:

(a) \(\vec{F}(t) = \langle \sqrt{t}, 1 + t^3 \rangle \); \(\vec{p}(0) = \langle 0, 1 \rangle \), \(\vec{r}(1) = \langle 1, 2 \rangle \)

(b) \[\int_C \vec{F} \cdot d\vec{r} = \int_C \langle x^3 y^4, x^4 y^3 \rangle \cdot d\vec{r} \]
\[= f(\vec{r}(1)) - f(\vec{p}(0)) \]
\[= f(1, 2) - f(0, 1) \]
\[= \frac{1}{4} (1^4 2^4) - \frac{1}{4} (0^4 1^4) \]
\[= 4 \]

Final Summary:

[A] \(\vec{F} = x^3 y^4 \vec{i} + x^4 y^3 \vec{j} \) is conservative and its potential function is \(f(x,y) = \frac{1}{4} x^4 y^4 + C \).

[B] Using the FTLI, \(\int_C \vec{F} \cdot d\vec{r} = 4 \); \(\vec{r}(t) = \sqrt{t} \vec{i} + (1 + t^3) \vec{j} \) \(0 \leq t \leq 1 \).