\[\text{Revising (‡)} \]

\[f(x,y) = \int x^4 y^4 + C \]

Now we can find \(\int_{\Gamma} \vec{F} \cdot d\vec{r} \) using FTLI.

\[\vec{F}(t) = \left< \sqrt{t}, 1 + t^3 \right> \quad 0 \leq t \leq 1 \]

\[\vec{F}(0) = \vec{F}(1) = \langle 0, 1 \rangle \equiv \langle 0, 1 \rangle \]

\[\vec{F}(1) = \vec{F}(1) = \langle 1, 2 \rangle \equiv \langle 1, 2 \rangle \]

\[\int_{\Gamma} \vec{F} \cdot d\vec{r} = \int_{\Gamma} f(x,y) \, dx + g(y) \, dy \]

\[= \frac{1}{4} x^4 y^4 + g(y) \] (‡)

\[\text{on the one hand} \]

\[f_y(x,y) = x^4 y^3 \]

\[\text{on the other hand, looking at (‡)} \]

\[f_y(x,y) = x^4 y^3 + g'(y) \]

\[\therefore \quad x^4 y^3 = x^4 y^3 + g(y) \]

\[\therefore \quad g'(y) = 0 \]

\[\therefore \quad g(y) = C \]

\[\text{III \ §17.4 Green's Theorem, p. 118.} \]

\[\text{Statement: 1. Let } C \text{ be a positively-oriented, piecewise-smooth, simple closed curve in the plane and let } D \text{ be the region bounded by } C. \]

\[\text{2. If } P(x,y) \text{ and } Q(x,y) \text{ have continuous partial derivatives on an open region that contains } D, \]

\[\text{Then } \int_C P \, dx + Q \, dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \]
B: Words

- Closed curve: $a \leq t \leq b$
- Simple closed curve
- Not smooth
- Positively oriented
- $\mathbf{p}(t) = \cdots$ for $a \leq t \leq b$

C: Problem

- $\oint_D x^2 dy + y^3 dx$
- C: Rectangle with vertices $(0,0), (2,0), (2,3), (0,3)$

Solution

1. Sketch
2. $P(x,y) = x^2$, $Q(x,y) = y^3$
 - P, Q have continuous partial derivatives C is piecewise-smooth, positively oriented, closed, simple.

3. **Green's Theorem**

 \[
 \oint_C xy^2 dx + x^3 dy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA
 \]

 - Evaluating the integrals:
 \[
 \int_{x=0}^{x=2} \int_{y=0}^{y=3} \left(3x^2 - 2xy \right) \, dy \, dx
 \]
 \[
 = \int_{x=0}^{x=2} \left[x^3 - x^2 y \right]_{y=0}^{y=3} \, dx
 \]
 \[
 = \int_{x=0}^{x=2} \left(9x^2 - 9x \right) \, dx
 \]
 \[
 = \left[\frac{3}{2}x^3 - \frac{9}{2}x^2 \right]_{x=0}^{x=2}
 \]
 \[
 = \frac{8}{3} - 2 = \frac{8}{3} - \frac{6}{3} = \frac{2}{3} = -G
 \]
§17.4: p. 1125 #13. Use Green (Check Orient.)

\[\vec{F} = \langle \sqrt{x^3 + y^3}, x^2 + y^3 \rangle \]

Let \(C \) be a curve \(y = \sin(x) \) from \((0,0)\) to \((\pi,0)\) and the line segment from \((\pi,0)\) to \((0,0)\).

Sketch:

- **Orientation:** Negative

\[\int_C \vec{F} \cdot d\vec{r} = -\int_D \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \, dA \]

Takes into account that the problem requires a negative orientation.

Class ends now... Continued after class...

3. \(\frac{\partial F_x}{\partial x} - 2x, \frac{\partial F_y}{\partial y} = 3y^2 \)

\[\int_C \vec{F} \cdot d\vec{r} = -\int_D \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \, dA = \int_{x=0}^{x=\pi} \int_{y=0}^{y=\sin(x)} (2x^3 + y^3) \, dy \, dx \]

\[= \int_{x=0}^{x=\pi} \left\{ 2xy - \frac{y^3}{3} \right\} \bigg|_{y=0}^{y=\sin(x)} \, dx = -\int_{x=0}^{x=\pi} \left[2x \sin(x) - \sin^3(x) \right] \, dx \]