Finding the general solution and state an interval on which the general solution is defined:

\[y' + \frac{1}{2} y = \cos(x) \]

Use an integrating factor in the process of your solution.

Solution:

1. Find IF. There are two ways of doing this:
 - (a) Finding, analytically \(\mu(x) = e^{\int P \, dx} \)
 - (b) Asking the ODE—"What is your IF?" And then listening closely for an answer. At this stage of your learning process, I must always ask you to do method (a), but I hope that you will soon be able to use method (b). Here's how method (b) works:
 \[x y' + y = (xy)' \]
 \(\mu(x) \) has just told me that \(\mu(x) = x \) is an IF.

But to get "credit" I must show that I can do method (a):

\[\int P \, dx = \int \frac{dx}{x} = \ln|x| + C \]

\[\mu(x) = e^{\int P \, dx} = e^{\ln|x|} = x \]

(\(\mu(x) = x \) for \(x > 0 \).)

2. Multiply both sides of (9) by \(\mu(x) \) to collapse the LHS and integrate:

\[x (y' + \frac{1}{2} y) = x \cos(x) \]
\[x y' + y = x \cos(x) \]
\[(x y)' = x \cos(x) \]
\[\int (x y)' = \int x \cos(x) \, dx \]

\(\star \star \star \)