I. I collected POD #10. There is no POD due tomorrow. Test #1 is next Mon, 9/04.

II. Begin 84.1.1 IVP \mathfrak{v} BVP, p. 112.
For linear ODE. (LODE)

A. IVP Concrete Example.

\[
\begin{aligned}
x y'' + x^2 y' - 2e^x y &= \sin(x) \\
\text{ICs} &\quad y(1) = -2, \quad y'(1) = 5
\end{aligned}
\]

Initial value \[\{ \begin{array}{l} x_0 = 1, \\ y_0 = -2, \\ y'_0 = 5 \end{array} \]

B. Thm 4.1: (p. 112).

4 Background: \[a_n(x) y^{(n)} + a_{n-1}(x) y^{(n-1)} + \ldots + a_0(x) y + a_{-1}(x) y = g(x) \]

\[y(x_0) = y_0, \quad y'(x_0) = y'_0, \quad \ldots, \quad y^{(n-1)}(x_0) = y^{(n-1)}_0 \]

C. BVP. (p. 114) Example 2nd Order.

\[a_2(x) y'' + a_1(x) y' + a_0(x) y = q(x) \]

Subject to: \[y(a) = y_0 \; \mathfrak{v} \quad y(b) = y_1 \]

III. § 4.1.2: Linear Dependence/Independence (p. 115).

A. Defn: Linear Combination of Functions.
If \[f_1(x), f_2(x), \ldots, f_n(x) \] are functions and if \[c_1, c_2, \ldots, c_n \] are numbers (constants), then

\[c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) \]

is a linear combination of the functions.

B. Example: If \[f_1(x) = x, \quad f_2(x) = x^2, \quad f_3(x) = 2x + 1 \]
then

\[2x - 5x^2 + 17(2x - 1) \]

is a linear combo. of the functions.

C. Question Arises: Do there exist numbers \[c_1, c_2, c_3 \]
such that \[c_1 f_1(x) + c_2 f_2(x) + c_3 f_3(x_0) = 0 \]?
If so, (follow-up question), what are those numbers?
D. If such numbers exist then the functions are called LINEARLY DEPENDENT. (or the set of functions \{f_1, f_2, f_3\} is a linearly dependent set).

E. In our case \(c_1 x + c_2 x^2 + c_3 (2x-1) = 0 \) (set \(L, f(x) = 0 \) solve for the \(c \)'s).

\[\begin{align*}
\text{SOL} \quad \text{Re-write Lin Combo.} \\
 & \quad c_2 x^2 + (c_1 + 2c_3)x + (-c_3) = 0 \quad \text{(A)}
\end{align*} \]

\[\begin{align*}
\therefore & \quad c_2 = 0 \quad \implies \quad c_2 = 0 \\
& \quad c_1 + 2c_3 = 0 \quad \implies \quad c_1 = 0 \\
& \quad -c_3 = 0 \quad \implies \quad c_3 = 0
\end{align*} \]

So the only way that the lin combo can "add up" to zero (see (A)) is for all the \(c \)'s to be zero. When this is the only way you can get a lin combo to be zero, then we say that the functions are LINEARLY INDEPENDENT.