FINAL EXAM is TOMORROW.

REVIEW:

A. Are these functions linearly dependent or linearly independent:
 \[f_1(x) = 4 - x, \quad f_2(x) = 3x + 7, \quad f_3(x) = 4x. \]

 Background: Polynomials \(P_1(x) = P_2(x) \) What does that mean? If they are both third degree,
 \[a_3x^3 + a_2x^2 + a_1x + a_0 = b_3x^3 + b_2x^2 + b_1x + b_0 \]
 So what does this mean?

 It means \(a_3 = b_3 \) and \(a_2 = b_2 \) and \(a_1 = b_1 \) and \(a_0 = b_0 \).
 (Corresponding coefficients MUST be equal.)

B. Systems of Equations (Solving),

Solve:
 \[c_1(4-x) + c_2(3x+7) + c_3(4x) = 0 \]
 \[4c_1 - c_1x + 3c_2x + 7c_2 + 4c_3x = 0 \]
 \[(-c_1 + 3c_2 + 4c_3)x + (4c_1 + 7c_2) = 0x + 0 \]
 \[-c_1 + 3c_2 + 4c_3 = 0 \]
 \[4c_1 + 7c_2 = 0 \]
2. Solve \((2x - y) \, dx + (4y - x) \, dy = 0\) (*)

Solution:

1. **Method.** Ask if exact?

 \[M(x, y) = 2x - y \quad N(x, y) = 4y - x \]

 \[\frac{\partial M}{\partial y} = -1 \quad \frac{\partial N}{\partial x} = -1 \]

 \(\therefore\) (*) is exact.

2. \[f(x, y) = \int M \, dx = \int (2x - y) \, dx \]

 \[= x^2 - xy + g(y) \]

 "Construct of Integrals"

3. Because of **Exactness**

 \[\frac{\partial f}{\partial y} = N(x, y) \]

 \[\therefore -z + g'(y) = 4y - x \]

 Conclusions: \(g'(y) = 4y\) \(\Rightarrow\) \(g(y) = 2y^2 + C\)

4. \[f(x, y) = x^2 - xy + 2y^2 + C \]

5. **The Solution** to (*) is \(f(x, y) = 0\) \(\therefore\)

 \[x^2 - xy + 2y^2 + C = 0 \]