I. Reviewed Web Page & Syllabus.

Then we went around the room twice - first defining an arithmetic sequence, next defining a geometric sequence.

We started in the book with \(Z \)

II. Ch 11. Sect 11.1. p. 822. SEQUENCES

A. Def.

A sequence is a row of numbers or list.

and the order is important.

The generic list looks like this

\[a_1, a_2, a_3, \ldots, a_n, \ldots \]

\[\uparrow \]

first term

\[1 \text{n-th term} \]

B. Example

\[2, 5, 8, 11, 14, 17, 20, \ldots \]

\[\sqrt{\sqrt{\sqrt{\sqrt{}}} \text{ etc.}} \]

common difference = 3

Call \(a = a_1 \), the first term, \(d = \) common diff.

\[a = a_1 = 2 \]

\[a_2 = 2 + 3 \]

\[a_3 = (2+3) + 3 = 2 + 2 \cdot 3 \]

\[a_4 = ((2+3)+3) + 3 = 2 + 3 \cdot 3 \]

\[\vdots \]

\[a_n = 2 + (n-1)3 \]

\[a_{100} = 2 + 99 \cdot 3 = 2 + 297 = 299 \]

So the 100th term of our arithmetic sequence is 299.
The FORMULA!

Basic Formula for the \(n \)-th term of an Arithmetic Sequence is

\[a_n = a + (n-i)d \]

II AFTER CLASS. // Some Examples of AS's (Arithmetic Sequences).

A Suppose \(a_n = 5 + (n-1)(-1) \). Then the sequence looks like this:

\[5, 4, 3, 2, 1, 0, -1, -2, \ldots \]

B By the way, the formula \(a_n = 5 + (n-1)(-1) \) which clearly identifies \(a \) (\(a_1 = 5 \)) and \(d \) (\(d = -1 \)) is often re-written as

\[a_n = 5 + (n-1)(-1) = 5 - n + 1 = 6 - n \]

\[a_n = 6 - n \]

which, of course, generates the same AS but conceals the true nature of \(a \) and \(d \).

C Suppose \(a_n = 5 + (n-1)7 \) or \(a_n = 7n - 2 \). Then the AS is:

\[5, 12, 19, 26, \ldots \]

D Suppose \(a_n = -2 + (n-1)4 \) or \(a_n = 4n - 6 \).

\[-2, 2, 6, 10, \ldots \]