A Intro:

--- fill in w/ A, S (8 possibilities)

\[\frac{A}{A} \frac{A}{A} \frac{A}{A} \]

Insuff. info No Specific triangle.

Solve by

\[\frac{A}{A} \frac{S}{A} \frac{A}{A} \]

Law of Cainses

\[\frac{S}{A} \frac{S}{A} \frac{S}{S} \]

Bad boy - Los 3 possible outcomes: May be

0 triangles 1 triangle 2 triangles

B What IS the Law of Sines (LOS)?

\[
\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}
\]

Short-hand: for 3 equations

[1] \[\frac{\sin A}{a} = \frac{\sin B}{b} \] and/or

[II] \[\frac{\sin A}{a} = \frac{\sin C}{c} \] and/or

[III] \[\frac{\sin B}{b} = \frac{\sin C}{c} \]
Also \[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

Examples: ASA

\[\angle A = 23^\circ, \angle B = 110^\circ, c = 50 \]

\[\angle C = 47^\circ \]

\[\frac{b}{\sin 110^\circ} = \frac{50}{\sin 47^\circ} \]

\[b = \frac{50 \sin 110^\circ}{\sin 47^\circ} \]

On calc.

\[b \approx 64.2433 \approx 64 \]

\[\frac{a}{\sin 23^\circ} = \frac{50}{\sin 47^\circ} \]

\[a = \frac{50 \sin 23^\circ}{\sin 47^\circ} \]

\[a \approx 26.71 \approx 27 \]

Example - Ambiguous Case, ASS.

1. Too short - No triangle
2. Just right - 1 triangle, rt. triangle
2 Possible triangles
\[\triangle ABC \text{ and } \triangle ABC' \]

Here \(s_2 \) was longer than \(h \), the distance from \(B \) to the "base" \(\overline{AC} \), and shorter than \(s_1 \).

\[\text{The final case is when } s_2 \text{ is longer than } s_1 \]

Here \(s_2 \) is way longer than \(s_1 \), so there is only one possible triangle.

\[\text{We shall study more of these tomorrow.} \]