A. Returned Tests & Notebooks
B. Explained "Redemption" process for Test #1.
C. Demonstrated Trig Link on web page.
D. Gave Quiz #1: \(\csc \left(\frac{11\pi}{6} \right) \) exact.
E. There will be Quiz on Wed.

\[\text{§6.5 Law of Cosines (LOC) p. 508.} \]

\[c^2 = a^2 + b^2 \]

\[c^2 = a^2 + b^2 - 2ab \cos C \] \(\text{(1)} \)

also

\[a^2 = b^2 + c^2 - 2bc \cos A \] \(\text{or (2)} \)
\[b^2 = a^2 + c^2 - 2ac \cos B \] \(\text{or (3)} \)

B. Solve (1) for \(\cos C \) :

\[2ab \cos C = a^2 + b^2 - c^2 \]
\[\cos C = \frac{a^2 + b^2 - c^2}{2ab} \]

\[\cos B = \frac{a^2 + c^2 - b^2}{2ac} \]

C. LOC: SAS or SSS

I. SAS

\[x^2 = 8^2 + 10^2 - 2(8)(10) \cos(60^\circ) \]
\[= 164 - 80 = 84 \]
\[x = \sqrt{84} \]
I would like to show you the basic idea behind the "proof" of the Law of Cosines. It is really very simple.

1. Draw any triangle—nothing special—definitely not a right triangle.

2. Now we construct a line segment from any vertex perpendicular to the opposite side—in this example, say from B and \(\perp \) to \(AC \).

3. So we have constructed two right triangles \(\triangle ABD \) and \(\triangle BCD \). From \(\triangle ADB \) we get
 \[h^2 = c^2 - x^2 \]
 and from \(\triangle CDB \) we get \(h^2 = a^2 - (b-x)^2 \).
 Putting these two equations together, we get
 \[c^2 - x^2 = a^2 - (b-x)^2. \]
 Solve this for \(a^2 \):
 \[a^2 - (b-x)^2 = c^2 - x^2 \]
 \[a^2 = c^2 - x^2 + (b-x)^2 \]
 \[a^2 = c^2 + b^2 - 2bx + x^2 \]
 \[a^2 = c^2 + b^2 - 2bx \quad (\star) \]

4. Now let's do some trig. Look at the left-hand triangle \(\triangle ADB \).
 \[\cos A = \frac{\text{adj}}{\text{hyp}} = \frac{x}{c} \quad \therefore \quad (x = c \cos A) \]
 Now substitute this into (\star):
 \[a^2 = b^2 + c^2 - 2bc \cos A \]
 This is one form of the Law of Cosines. The proofs of the other forms are similar.