I returned TEST #3a & NOTEBOOK #3a.

§7.4: p. 308: CONVOLUTIONS.

A. Definition: If \(f \) and \(g \) are piecewise continuous on \([0, \infty) \), the convolution of \(f \) and \(g \), written \(f \ast g \), is defined by

\[
f \ast g (t) = \int_{\tau=0}^{\tau=t} f(\tau) g(t-\tau) \, d\tau
\]

B. "\(\ast \)" is commutative, i.e., \(f \ast g = g \ast f \)

Proof: \(\Box \)

\[
f \ast g (t) = \int_{\tau=0}^{\tau=t} f(\tau) g(t-\tau) \, d\tau \tag{A}
\]

2. And let \(u = t - \tau \), then \(du = -d\tau \)

3. And \(\tau = t - u \). If \(\tau = 0 \), \(u = t \); if \(\tau = t \), \(u = 0 \)

4. Now substitute into (A)

\[
\int_{\tau=0}^{\tau=t} f(\tau) g(t-\tau) \, d\tau = - \int_{u=0}^{u=t} f(t-u) g(u) \, du
\]

\[
= \int_{u=0}^{u=t} g(u) f(t-u) \, du = g \ast f
\]

5. \(\Box \). \(f \ast g = g \ast f \)

What Good is This "Convolution"?

Convolution Theorem (7.9) p 309.

If \(f \) and \(g \) are piecewise continuous on \([0, \infty) \) and of exponential order, then

\[
\mathcal{L}\{ f \ast g \} = \mathcal{L}\{ f(t) \} \cdot \mathcal{L}\{ g(t) \} = F(s) \cdot G(s)
\]
Inverse Form of Convolution, p. 310.
\[\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)(s+4)} \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \cdot \frac{1}{s+4} \right\} \]

Example of Usage (p. 310): Find, using, Inv. Conv.
\[\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)(s+4)} \right\} \]

Solution:
1. \[\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)(s+4)} \right\} = \mathcal{L}^{-1} \left\{ \frac{1}{s-1} \cdot \frac{1}{s+4} \right\} \]
 = \[e^t \ast e^{-4t} \]
 = \[\int_{\tau=0}^{t} e^\tau \cdot e^{-4(t-\tau)} \, d\tau = \int_{\tau=0}^{t} e^{5\tau-4t} \, d\tau \]
 = \[\left. \frac{e^{5\tau-4t}}{5} \right|_{\tau=0}^{t} = \frac{1}{5} \{ e^t - e^{-4t} \} \]

2. \[\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)(s+4)} \right\} = \frac{1}{5} \{ e^t - e^{-4t} \} \]

Check: Find \(\mathcal{L}^{-1} \) the "old way."

\[\frac{1}{(s-1)(s+4)} = \frac{\sqrt{5}}{s-1} + \frac{-\sqrt{5}}{s+4} = \frac{1}{5} \left[\frac{1}{s-1} - \frac{1}{s+4} \right] \]

\[\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)(s+4)} \right\} = \frac{1}{5} \{ e^t - e^{-4t} \} \]

See! \((\#)\) and \((\#\#)\) are THE SAME!
Theorem 7.10, p. 311.

If \(f(t) \) is piecewise continuous on \([0, \infty)\)
and of Exp.Order, and if \(f(t) \) is periodic
of period \(T \), then

\[
\mathcal{L}\{ f(t) \} = \frac{1}{1 - e^{-sT}} \int_{t=0}^{t=T} e^{-st} f(t) \, dt
\]

(Read the Proof in the Book)