We reviewed additions made to yesterday's notes.

From § 5.2.

Complementary Events.

Example. Suppose

\[S = \{ a, b, c, 7, 1, 4, *, c \} \] \(n(S) = 8 \)

Let \(E_1 = \{ a, b, c \} \)

"Event #1"

The **complement** of event \(E_1 \), denoted by \(E_1^c \), is all elements (members) of \(S \) which are not in \(E_1 \).

\[\therefore E_1^c = \{ 7, 1, 4, *, c \} \]

\[E_2 = \{ b, 4 \} \implies E_2^c = \{ a, c, 7, 1, *, c \} \]

Complementary Probabilities

In Example above.

\[
P(E_1) = \frac{n(E_1)}{n(S)} = \frac{3}{8}
\]

\[
P(E_1^c) = \frac{n(E_1^c)}{n(S)} = \frac{5}{8}
\]

Important: Notice that \(\frac{3}{8} + \frac{5}{8} = \frac{8}{8} = 1 \)

[Continued]
My point here is that if I know what $P(E_i)$ is, I don't have to list E_i^c to figure its probability.

\[
P(E_i^c) = 1 - P(E_i) \quad (*) \text{ACTIVE VOCAB.}
\]

\[
(P(E) + P(E^c) = 1) \quad \text{idea here}
\]

\[E_1 \cap E_2 = \emptyset \quad \text{ACTIVE VOCAB.} \quad (**)
\]

CLASS ENDS...

C Note: The formula for the probability of an event E

\[
P(E) = \frac{n(E)}{n(S)} \quad \text{is ACTIVE VOCAB.} \quad (!) \quad (***)
\]

D Formula $(*)$, above, is particularly useful in "solving" the probability of the form "... at least one...."

Right now, all I can give you is a really simple example, which could easily be solved with a simple, straightforward method. But here, we illustrate a very important
technique:

First, note that $P(E^c) = 1 - P(E)$ (from prev pg) can also be written

$$P(E) = 1 - P(E^c) \quad (*)$$

Second, note that the complement of "...at least one...." is "none...."

Thus, in the "Three question quiz" example — I remind you

$$S = \{ CCC, CCI, CIC, ICC, CII, ICI, IIC, III \}$$

and $n(S) = 8$ \[B \]

If the question is, "What is the probability that the student gets at least one question right?"

then the event is "...gets at least one question right."

This is E.

What is E^c? E^c is "the student gets no question right."

Another way of saying the same thing is:

"the student gets all questions wrong."

This is E^c, and it is easy (I hope) to see that

$$P(E^c) = \frac{n(E^c)}{n(S)} = \frac{1}{8}.$$

\[\therefore \] $P(E) = P(\text{at least one right}) = 1 - P(E^c) = 1 - \frac{1}{8} = \frac{7}{8}$.