II Probability

- Theoretical
- Empirical

Sample Space

Just think about it

Events

\[P(E) = \frac{n(E)}{n(S)} \]

Active Vocab.

II Disjoint Events

\[E_1 \cap E_2 = \emptyset \text{ (no "overlap")} \]

III Compound Event

\[P(A \text{ or } B) = P(A \cup B) \]

Suppose \(A = \{1, 2, 3\} \) \(B = \{2, 3, 4, 5\} \)
\(S = \{1, 2, 3, 4, 5, 6, 7, 8\} \)

\[P(A \text{ or } B) = \frac{n(A \cup B)}{n(S)} = \frac{5}{8} \]

\[P(A \text{ and } B) = \frac{n(A \cap B)}{n(S)} = \frac{2}{8} = \frac{1}{4} \]
\[P(A) = \frac{n(A)}{n(s)} = \frac{3}{8} \]
\[P(B) = \frac{n(B)}{n(s)} = \frac{4}{8} = \frac{1}{2} \]
\[P(A) \times P(B) = \frac{3}{8} \times \frac{1}{2} = \frac{3}{16} \]

To repeat \(P(A \text{ and } B) = \frac{1}{4} \)

Here \(P(A \text{ and } B) \neq P(A) \times P(B) \)

In such a situation we say that the events \(A \) and \(B \) are **not disjoint** \(\text{ and not independent} \). **They are dependent.**

In general a formula that always works is
\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]

Why? \(P(A) = \frac{3}{8}, P(B) = \frac{1}{2} \) to repeat.

\[P(A \text{ or } B) = \frac{n(A \text{ or } B)}{n(s)} = \frac{5}{8} \]

\[P(A) + P(B) = \frac{3}{8} + \frac{1}{2} = \frac{3}{8} + \frac{4}{8} = \frac{7}{8} \]

The formula that always works for "or" problems is
\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
So if A and B are DISJOINT
Then $A \cap B = \emptyset$
and $n(A \cap B) = n(\emptyset) = 0$
\[\therefore P(A \text{ and } B) = \frac{n(\emptyset)}{n(S)} = 0 \]
\[\therefore \text{ If } A \text{ and } B \text{ are DISJOINT}, \]
\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
\[= P(A) + P(B) - 0 \]
\[P(A \text{ or } B) = P(A) + P(B) \text{ if DISJOINT} \]

After Class

Note in the example above
\[P(A \text{ or } B) = \frac{5}{8}, \quad P(A) + P(B) = \frac{7}{8} \]
and $P(A \text{ and } B) = \frac{1}{4}$

So let's see if the "OR"-formula works for this example.
\[P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B) \]
\[\frac{5}{8} \overset{?}{=} \frac{3}{8} + \frac{1}{2} - \frac{1}{4} \]
\[\frac{5}{8} \overset{?}{=} \frac{3}{8} + \frac{4}{8} - \frac{2}{8} \]
\[\frac{5}{8} \overset{?}{=} \frac{3 + 4 - 2}{8} \]
\[\frac{5}{8} = \frac{5}{8} \rightarrow \text{YES!} \]