6.3 Trigonometric Functions of General Angles

I. Find the exact values of the trig fns for general x's.

- **Example:**
 - Use unit circle for x's that terminate on an axis like $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$, etc.
 - Same for degree measures.
 - $\cos \frac{3\pi}{2} = 0 \rightarrow \sec \frac{3\pi}{2} = \frac{1}{0} = \text{undefined}$
 - $\sin \frac{3\pi}{2} = -1 \rightarrow \csc \frac{3\pi}{2} = \frac{1}{-1} = -1$
 - $\tan \frac{3\pi}{2} = \frac{\sin \frac{3\pi}{2}}{\cos \frac{3\pi}{2}} = \frac{-1}{0} = \text{undefined}$
 - $\cot \frac{3\pi}{2} = \frac{0}{-1} = 0$

1. $\cos (-2\pi)$
 - $\cos (-2\pi) = 1$

2. $\sec \left(-\frac{5\pi}{2}\right) = \frac{1}{\sin \left(-\frac{5\pi}{2}\right)}$

3. $\sin 90^\circ$
 - $\sin 90^\circ = 1$

I. B. Using reference angles to find the exact value.

Hint: Always use the x-axis as a side. Reference x is adjacent to the x-axis and always positive.
use $45^\circ \Delta$ and $30^\circ, 60^\circ \Delta$ for any θ whose reference is either $45^\circ, 30^\circ,$ or 60°.

$45^\circ = \frac{\pi}{4}, \ 30^\circ = \frac{\pi}{6}, \ 60^\circ = \frac{\pi}{3}$

All trig functions positive in quadrant I.
Cosine positive in quadrant IV. Hence same for secant.
Sine " " " " II. " " " " cosecant
Tangent " " " " III. " " " " cotangent

*Use reference θ to find the exact value of each expression.

6. $\cos 210^\circ$

Reference $\theta = 210 - 180 = 30$

$\theta = 210^\circ - 180^\circ = 30$

Use reference θ (30°) and $\frac{\sin \theta}{\cos \theta}$ to find exact values.

$\sin 210^\circ = -\frac{1}{2}$
$\cos 210^\circ = -\frac{\sqrt{3}}{2}$
$\tan 210^\circ = \frac{1}{\sqrt{3}}$
$\csc 210^\circ = -2$
$\sec 210^\circ = -\frac{2}{\sqrt{3}}$
$\cot 210^\circ = \sqrt{3}$

Only tangent and cotangent positive in quadrant III.
\(30^\circ = \frac{\pi}{6} \)

\(60^\circ = \frac{\pi}{3} \)

\(45^\circ = \frac{\pi}{4} \)

7. \(\cos \frac{2\pi}{3} \)

\(\frac{2\pi}{3} \) is in II

and reference \(\theta \) is \(\frac{\pi}{3} \) or \(60^\circ \)

Cosine is \((-\)) in II

\[
\cos \frac{2\pi}{3} = -\frac{1}{2}
\]

8. \(\sin(-210^\circ) \)

\(-210^\circ \) in III

\(\theta \) - reference \(\theta \) is \(210 - 180 = 30^\circ \)

\(\sin \) is \((+)\) in II

\[
\sin(-210^\circ) = -\frac{1}{2}
\]

9. \(\sec \left(-\frac{9\pi}{4}\right) \)

\(-\frac{9\pi}{4} \) in IV

Reference \(\theta \) is \(\frac{\pi}{4} \) or \(45^\circ \)

Secant is \((+)\) in IV

\[
\sec \left(-\frac{9\pi}{4}\right) = \sqrt{2}
\]

Find the exact value of each of the remaining trig fns of \(\theta \)

9. \(\sin \theta = -\frac{5}{13} \), \(\theta \) in III
negative because sine is so in III

\[5^2 + x^2 = 13^2 \]
\[25 + x^2 = 169 \]
\[x^2 = 144 \]
\[x = 12 \]

\[\sin \theta = -\frac{5}{13} \]
\[\csc \theta = -\frac{13}{5} \]
\[\cos \theta = -\frac{12}{13} \]
\[\sec \theta = -\frac{13}{12} \]
\[\tan \theta = \frac{5}{12} \]
\[\cot \theta = \frac{12}{5} \]

(10) \[\cos \theta = \frac{4}{5}, \quad 270^\circ < \theta < 360^\circ \]

\[4^2 + y^2 = 5^2 \]
\[16 + y^2 = 25 \]
\[y^2 = 9 \]
\[y = 3 \]

\[\sin \theta = -\frac{3}{5} \]
\[\csc \theta = -\frac{5}{3} \]
\[\cos \theta = \frac{4}{5} \]
\[\sec \theta = \frac{5}{4} \]
\[\tan \theta = -\frac{3}{4} \]
\[\cot \theta = -\frac{4}{3} \]

(11) \[\cot \theta = -2, \quad \sec \theta > 0 \]

the only quadrant that cotangent is negative and secant is positive is IV. \[\frac{5}{13} \]

\[2^2 + 1^2 = c^2 \]
\[4 + 1 = c^2 \]
\[5 = c^2 \]
\[c = \sqrt{5} \]

\[\sin \theta = -\frac{1}{\sqrt{5}} \]
\[\csc \theta = -\sqrt{5} \]
\[\cos \theta = \frac{2}{\sqrt{5}} \]
\[\sec \theta = \frac{\sqrt{5}}{2} \]
\[\tan \theta = -\frac{1}{2} \]
\[\cot \theta = -2 \]